The Canonical Csound
Reference Manual

Version 6.09.1

Barry Vercoe, MIT Media Lab
et. al.

The Canonical Csound Reference Manual: Version 6.09.1
by Barry Vercoe and et. al.

Table of Contents

1= = o PP XXXV
Preface to the CSouNd Manualcoouiuiiiiiiie e XXXV
History of the Canonical Csound Reference Manualoovvviiiiiiiiiiiieici e, XXXVi
COPYHIGNE NOICE ...ttt ettt e e et e e e e eeeans XXXVil
Getting Started With CSOUNGiiiiiieiei e XXXiX
What's new in CSouNd 6.09.1 e xli

[@Y 1= PP 1
T gL oo (1 1o o RSP 4
The CsouNd COMMANGc.uiiiie e e e e et e et e et e e et e e ea e een s 5

Order Of PreCEABNCEiieieii et e eenas 5
Description of the command SYNEAXccoeuuuiiiiiiieeiiii e 5
Csound COMMEANG TINE ... et eaens 7
Command-line Flags (DY CaEJONY)uuiiiiiiiieeiiiii et e e e 17
Csound Environment Variablesooouuiiiiiii e 28
Unified File Format for Orchestras and SCOMeScceuvuieiiiiiiieiiiiiiieeeei e 31
DESCHIPLION ..ttt et 31
EXBIMPIE . 33
Command Line Parameter File (.CSOUNAICT)ccuuurieiiiiiieiiiiie e 34
SCOrE File PrePrOCESSING . .ccevvueiiiie ettt ettt et e e 34
The EXIraCt FEALUIEceeiii et 34
Independent Pre-Processing With SCSOMuuvvviiiiiiiiiiiiieie e 35
USING CSOUNG ...ttt ettt e e ettt e ettt e et ettt e e ettt e e e e erb e e eeebb e eeen 36
CsoUN'S CONSOIE OULPULeeeeiiee ettt e ettt e e e et e e eeneaeeees 36
HOW CSOUN WOTKS ...t e e et e e e e e e eees 37
Amplitude ValueS in CSOUNGccovvuiiiiiiieeeii e e 38
REAI-TIME AUTIO ..t e e e e e e 40
REAITIME 1/0O 0N LINUX ..eitiieeieee et e e e e e eenns 40
VLB OSX ittt 46
AT T 0T [0TSR 47
Realtime 1/0 with JACK Connection Kitcooouuiiiiiiiiieeiiii e 48
Optimizing AUAIO [/O LBIENCYcevvveeieiiie ettt 49
1600]01 1T |01] ol RSP PP PP UPPPPTNN 51
Syntax Of the OFChESIIa i 52
Orchestra Header SEAEMENTSuuiiiiii e 52
Instrument and Opcode BIOCK StaleMENtSccevvuieiiiiiiieeiii e 53
Ordinary SEALEIMENTS oeeeeti et et e e et e et e e e et e e e aaa s 54
Types, Constants and Variablesc.uuviiiiiiiii e 54
Variable INtTalizationoouiiii e 55
EXIIESSIONS ...ttt ettt aaas 55
Directories and FilESoeuiiii e 56
[N To g0 oot P (1 = PP 56
= o (0L PPN 57
NaMEd INSEFUMENES ...t et e et e e e e eeenns 57
User Defined Opcodes (UDO)cveeuieiiiie ettt e s 60
K-REE VECIOIS ...ttt e e e eans 60
FUNCtion Syntax iN CSOUNBceverunieeiiiieeeeit ettt 60
The Standard NUMEIC SCOMEccuuiiiiii et 62
Preprocessing of Standard SCOMESccuuuieiiiiiieiii e 62
ATy e 62
TEIMPO e 63

S0 TSP TP UPPPPRRPPPIN 63

The Canonica Csound

Reference Manual
SCOME SEALEIMENLS ... e ettt et e e e e e et e e e e e e e neenns 64
Next-P and Previous-P SymbOoISooiiiiiiic e 64
L 10101 1o P 65
SCOME MBCIOS ...ttt ettt et et e e e e r e e e e et e et e en e eenns 66
MUIIPIE FIlE SCOME . .cvun it e e e aaa s 68
Evaluation Of EXPrESSIONSuiiiiiiiiieeiieeeiie e e e e e e e e e e e e e e e e et e e ean e aen s 68
SHINGS IN P-FIEAS ..o 70
0] 1 = 0o PSP 71
L0 o 1113 o /AN PSP 72
L0 o 10110 |V PSP 74
10 TH Lo [T Ko 11 oo 76
L0 o101 o I I 0SSP 77
[1. OPCOUES OVEIVIEW ...uiiiieiii e et e e e e e e e e e e e et e e et e e et e e et e e et e e et e et e eaaeeenneeeens 78
o7z I €T 0= (] (= 82
Additive SynthesiSRESYNTNESISuiiiii e 82
[2F S ol @ S ol | = o) = PR 82
Dynamic Spectrum OSCIHIBEOISuuiiiiii e e e e 82
LIS 011 === N 83
Granular SYNNESISuiii e e 83
Hyper Vectorial SyNtheSISc.vuiiiiiii e 84
Linear and EXponential GENEratorSccuuieiiuieiiie e e e e e e e e e e e e e eaens 84
ENVEIOPE GENEIALONS .. .ovi it e e e e e e e e e e e e e e e eeen 85
Models and EMUIBLIONSiiiiiiiieeiii e e e e e e e 85
0= 0 TSP 86
RaNdom (NOISE) GENEIAIONSuuiviieiiieeei e e e e e e e e e e e e e e e e e eean e eaes 87
SamPle Playbackoouiiii i 88
S o 090 0] (=3P 88
SCANNEA SYNMENESIS . .eve i e e e e e e e 90
TADIE ACCESS ..ttt ettt aaaan 91
Wave Terrain SYNthESIS 92
Waveguide Physical MOElINGcovuiiiiiiiii e 92
S 7= I o 10 =g To B0 14 o LU | 93
File INPUt @0 OULPULceveeii e e e e e e e e e e et e e e e e aanaees 93
RS0 7= I 1 oL | 93
S 7= O 14 o 11 | PN 93
SOFTWEAIE BUS ...ttt ettt et e et e e e e e eeas 94
Printing and DiSPlayccuueiiieiii e 94
SOUNd FilE QUETIES .. vvi e e e e e e e e eeas 94
S 7= 1Y, oo [11 96
Amplitude Modifiers and DynamiC ProCeSSINGccuueeunierruieriiieeaiieeeiieeeiieeeeeeeaneenes 96
Convolution and MOFPhINGeiuiieiii e e e e e e e e 96
D A et 96
Panning and SpatialiZationoveiiiiiiiii e 97
REVEIDEIELION ...eeviiiie e 98
SaMPIE LEVE OPEratOrS . .ovvi i eeie e et e e e e e e e e et e e e e eens 99
S o= I T 4110 P 99
SPECIAl EFfECLS .. i 99
SEANAAIT FIIEEIS ..ueeeii e 100
SPECIAlIZEA FTEIS .. i 102
WaAVEGUIAESeieiiiee e e e e e e e e et e e e e e e e aanas 102
Waveshaping and Phase DiStortionvviiiiiiiiiccii e 102
INSEIUMENE CONEFOL ...t e et e e e et e e e e et e e e e et e e e entenaeeees 104
L0 o: L @0 i o PPN 104
CoNditioNal VAIUESuuiiiiiii e 104

The Canonica Csound

Reference Manual

Duration Control SEALEMENESuuuiiiiiiiie e e e e 104
FLTK Widgets and GUI CONLrollErScouuviiiiiiiiii e 104

[I I Q041 7= 114 1= £ PP 107

FLTK VAIUBLOTS .ottt e e e et eeeaees 107

Other FLTK WIAGELS ...eevvvieeiiii e eei e e 108

Modifying FLTK Widget APPEAraNCeoevuniiiiieiiieeeii i e e e e e e 108

General FLTK Widget-related OpCodesccoovvvviiiiiiiiiieciiieceeeee e, 109

INSEFUMENE TNVOCELION ...evvtieeeii e ettt e et e e e eab e e e eatn s eeeene 109
Program FIOW CONtrolccouuiiiiiie e e e e e e e e e e e 110
Real-time Performance CONtroluiiiiiiiiiiiii e 111
Initidlization and REINItIaliZaliONcccvviiiiiiii e 111
SenSiNG and CONLIOlouvniiii e e e e e e e e e e aanas 112

S = oL PSP 113
SUB-INSErUMENt COMEIOL ...eeveee e 113
TIME REAAING .vuiii i e e e e e e e e e e 113
FUNCEION Table CONLIOloeueeeieii e e et e 115
TahIE QUENIES ...t e 115
REAANVIITE OPErAtiONS ... cvvieii i eiie e e e e e e e e e e e e e et e e e e eaanees 115
Table Reading with Dynamic SEleCtionccoovviiiiiiiiiii e 116
MathematiCal OPEIELIONSc.uuiiieiieiiie i e e e e e e e e e e e e e e e et e e et e e eanaeeeas 117
AMPLITUAE CONVEITENSviiiii e e e e e e e aeas 117
Arithmetic and LOgIC OPEratioNSccvuuieiiiieiieeeii e e e e e e e e e e e e e ae 117
Comparators and ACCUMUIGLOTScivueiiiieeii e e e e e e e e e e e e e e e e eanes 117
Mathematical FUNCLIONSiiiiiiie e 118
Opcode Equivalents of FUNCHONScccouiiiiiiciie e 118
RANAOM FUNCLIONS ...evvie e e e e e r e 118
TrIQONOMELNC FUNCHIONS .. .evuiciii e e e e e e e e e e aenas 119
Linear AlQera OPCOUEScviuieii e 120

F N = YO o oo o = PPN 128

[(e N O 01V = 4 1= £ PP 135
0 1o PP 135

LI 10110 T o wTo o L= 135
ReAl-tiME MIDI SUPPOITietieiiii e e e e e e e e e r e e e e e et e e et e e st e e e aaeaannaees 136
Virtual MIDI Keyboardcc.uoiiiiiiiii e 137
] T o O 140
MIDI MESSAGE OULPUL v uevieeiieie ettt e e e e e et e e e e e ans 140
Generic INPUE and OULPULvveiiii e e e e e e e e e e e e e e aane s 141
10010177 1 (< = T PP PPPT 141
EVENE EXLENAEIS .. .oieeiiieeee et e et 141
NOtE-ON/NOLE-OFff OULPULevuiiii i e e e e e e aaas 141
MIDI/Score Interoperability OPCOUESocvvviiiiiiiii e 142
System ReAltiME MESSAESuuiiii i i ie e e e e e e e e e e e e e et 143
SHAEr BaANKS ... 143

S oo = 0o 1o [P 144
Short-time Fourier Transform (STFT) ReSYNtheSIScccvvviiiiiiiiiiiiiiecii e 144
Linear Predictive Coding (LPC) ReSYNthESISivviiiiiiiciie e 144
Non-standard Spectral ProCESSINGcccuuiviiiiiiiiieiie e e e e e e 145
Tools for Real-time Spectral Processing (PVS OPCOAES)uvvvniiiiiieiiieeiiiieeiieeeineens 145

ATS SPECIral PrOCESSING ...vuiiiiiii e e e e e e e e e e et e ean e ee 146
[0 FY O oot o (= 147
Array-based Spectral OPCOAEScvvuiiiiei e 150

S 10 152
String Manipulation OPCOAESccvvuiiiii i 153
String ConVErsion OPCOUEScouuuiiiiieiii e e e e e e e e e e ees 154

The Canonica Csound

Reference Manual

VA= v (0 = @ ool o [155
Tables Of VECIOrS OPEraIOrSvivii it eii e e e e e e e e e e e eaen 155
Operations Between a Vectorial and a Scalar Signalccovevviviiiiieiiiiciie e, 155
Operations Between two Vectorial SIgnalScocovieiiiiiiiiiiiiiiccce e 156
Vectorial ENVEIOPE GENEIAIOrSiivi e eiii e e e e e e e e e e e e e 156
Limiting and wrapping of vectorial control SignalScoccoveviiiiiiii i, 157
Vectorial Control-rate Delay Pathscc.ooiiiiiiiiiiice e 157
Vectorial Random Signal GENEratorSc.uuieiiiiiiiiieiie e e e e e 157

ZaK PafCh SYSEEIM ... 158
L T o TR 01 1 o 159
DSSI| and LADSPA fOr CSOUNG ...cevviiiiiiiie et e e e e e e e e eni e eennes 159

VST FOF CSOUN ...ttt e et e e et e e e e ae s 159
OSC ANA NEIWOTK ...eueeeiiii et e et e ettt s e e e ettt e e e ebtaeeeerenaaeaes 161
ADbIeton LiNK OPCOUESuiiiieiiiici et e e e e e e e e aens 161

S S P 161

[N Ao PSP 162

RS 11101 (= I @] 0 w0 o === T 162
Tt G @] 0o === N 163
Signal FIow Graph OPCOAEScvvvniiii e e e e e e e aaas 164
0= o (o T o000 == 167
[T RO oo oo - PN 170
Y010 g T @0 e o L= 175
g1 1070 [0 ot [o USSP 175
OFCNESITA SYNEAX ..evuiiiiiieii e e e e e e e e e e e e et e e et e e e et e e ean e et 175
IMage ProCeSSING OPCOOESuuiiit it et e et e et e e e et e e e e e e e e et e e e et e e e e e st e e e anaeeaneeeen 177
Y I oo [178
MiSCEIlANEOUS OPCOES ... cviiiiii e e e e e e et e e e e aaaees 180
T REFEIEINCE ... ettt e et et e et e et e eean e 181
Orchestra Opcodes and OPEratOrSovvuueiiieeii et e e e e e e e e e e et e e e e e e aaanaaes 210
PP 211
FHEFINE .o e 213

2] 00 10 o L= PSPPSR 217
FHUNGER L. e 219
FTAE Lo e 220

1 0o L= PSP 221

BN AIME oo e 222

L PSP 225

B e 227
DU SPPRT 229

D PP 231

S U SPPR 233
PP 235

S PP 237
OSSP 240
PP 243
PR 246

i itttereerere e er e e et et e ere e e e et e e e et et e et et ee e et ee et et r e et et e e et et e e et e e e et aera s 249
PP 251
RSO RPN 253
PP 255

| PP 257
00 PSP 260

A e 263
PP 264

Vi

The Canonica Csound

Reference Manual
> et e e e eeteeteetee et eea et et et taeetie et e et aaaaaa 266
L PRSP 267
PP 269
TP 270
TP 271
PR 272
A0S e 274
o £V TP 276
0 [PP 280
=015V o PN 283
=015V | 285
=015V) 2P 288
AT OUCI et 291
o 0= PN 293
o Y= Y £ o 295
0] oo | o P 298
AMPADTS L. 300
0o 0 1o 302
BMPMIAIA ... 304
= 1<) 1 306
s 00| PPN 308
= 1) = PP 310
(0] 0= TP 312
= 1] = S 314
AT SO oot 316
YN = (o [0 AP 320
PN B LU (== o [PPSR 323
AN B o 01PN 325
72N B 110 TP 328
F NS T 1= o (== 331
F N B == o 333
F N B = o [A PTRPTNRN 337
F IS o g = o TN 340
F N S 1 Vo PSP 342
0= oo TR 346
DAlANCE .. et 350
DAMDIOO0 ... e 352
DAMMOE] ... oo 354
0] 0oL 1 10 0 TR 356
0] 0oL 1 | PSP 361
DELArANG ...eviee i 364
0724 o 1P 367
0] 104 011 o (o KU PPRPSTRN 369
0] 104 0190 (= o PRSP 372
o] 1 1 TSP 375
DIGUAH ..o 377
DIUAOA ... e 382
o] 1 2 To [T PTP 385
o] o P 387
DOTEZ .o 389
01011 o o TP 391
o111 o) PP 392
01011 o P 393
010111 T 394

Vii

The Canonica Csound

Reference Manual
0101111 o] o 1 395
010111 o] P 397
0101111 o 399
o101 1= 1 | o TP 401
01011 o o P 403
BUZZ ..o e 405
021 PP 407
(07 0 - 409
Lo 1 (o VPPN 411
(o7 1 o Y/ P 413
o= P 415
CE | e e 417
00 0 | PP PPRPRN 420
(o= 01101 P 422
(0= o1 PP 424
(o= 01 1Y 426
(000 [0 [0 TN PP 428
o =1 1 PN 430
ChaNQEd .. cee i 432
ChaNQEO2 ... 434
ChaNI oo 437
ChaNO ... 438
ot o] o P 439
ChEBYShEVPOLY ..o 441
ChECKBIOX ..oeecii 444
NN L 446
CRNCIEAN ... e e 448
CRNEXPOIT <. e 450
CRNGEL oo e 452
CRNIMIEX e 455
ChNPAIAMS ... e 457
NS o 458
CNUD .. 461
01T To o 1 465
(012 (0] (0 T 467
(01 P 469
o RN 471
ot 1 o TP 474
(ot otXCo FPN 476
ClOCKON L. 478
(01 o PSP 480
ot 107 0] D14 o £ o P 482
(0110 [0 (o TN PP 484
o100 o PR 486
o0 101 011 1Y/ 488
(o] 0] 0] 1= oo [490
(or0] 0101 071 1= o o 492
(o0 101 0] 1= 1 494
(00001 01> TP 496
(00 0] 01>V PRP 499
(00 0] 1 = o S 502
(010311 (o) TSP 505
(o0 01V PP 506
(000 017/ 0] Y T 507

The Canonica Csound

Reference Manual
(o0])Y 24 1 = o 511
(00])] 271 - Y 513
000 PP 515
(o015 < o [PP ORI 517
L0015 | o T 519
(00155 o | PP 521
0101 o PP 523
o001 1Y PSPPSR 525
ot 015724 oo . P 527
ot 01 211 531
CPSMIAID .o 533
(ot 01 2101 1 o o 535
(0f 0150 o S PP 539
o101 oo o [P 542
ot 01511 1o [545
[of 1= L1 PP PP 547
ot 011 550
ot 0174 oo . TP 553
(of 1010 0= (= PP 557
(0f 11 o o PP 559
(0001557 562
o 101 1 1 RSP UPPTRPPT 564
o1 1o o PP 567
o 1 PP 569
o 1 220 PSP 571
o 1 PP 573
1 1 o PSP 576
Lo 1 o PSP 577
0= PSP 580
0 PRSP 583
0 S PP 585
0] o SN 587
(07 1 1] o T 589
(0155201 TP 591
ACDIOCK ..o 593
ACDIOCK2 ... 595
0o 0 1Y PP 597
0o PR 599
[0t] 1SRN 601
B A e s 603
ElAY L .o 605
EIAYK .ot 607
(01 1/ 610
E AW e et a e 612
(01 7= o 1 PP 614
01 7= 2 T PP 617
(011 7= o PP 620
(01 =10 o 623
01 7= o) PSP 625
(01 =10)|, 627
012070 4 10 TP 629
0 PSP 631
iode 1adderceei e 633
Lo T = (o Y/ 636

The Canonica Csound

Reference Manual
(01T 1o = 1 PR 638
(0 TES 1 o PP 641
GISKINZ L.t 644
(0TS P 648
0TS0 650
(0T o] o PP 652
0T o] o P 654
[0 74PN 656
(0 [0 o] o] = P 658
0 [0 S PT 660
0 (01115 o P 661
(oL oYz (= 663
ASSIBCHVALE ...t e et 665
[0 LSS o [T PP 668
OSSICHIS et 670
[0 LSS T T SR SPPPTPRUP 672
[0 1SS] SR 674
(0 111070 676
0 1101 o) 022 679
(o 11107 0] G J P 682
0 1101 0] 685
(011 = 1 o SO SRP 688
USE Lot a e 690
011 2SR 692
Bl B Lttt e 694
Bl BT 696
<07 T PP 698
<07 T PP 700
<20 (o o PPN 702
L= 017710 705
L= 017710 P 708
< 0] 7= o P 711
<o 11 PP 713
L= 1 PSP 715
12 Y= o | PP PPP 716
=YL= 3| P 720
Lo = PP 722
EXITNOW .ttt e ettt ettt et ettt e et n et e b reat e e aannn 724
L2 o PSPPSR 726
L2010 Y= PPN 728
200 PSPPI 730
Lo o PN 732
oo 734
(20 o PP PP 736
(0SS o = L PP 738
Lo 015 o |« P 740
Lo 1S o |0 PR 742
LS8 o | 744
1= 0= 11 o o SR 746
L= 0 (o] 1011 1 747
FAUSICEL et 748
L2010 = PN 749
L= (=54 = 751
FAIEYIENI Loeee 753

The Canonica Csound

Reference Manual
LT o = = 756
L1 1= o S P 758
LRI e e 760
FHENCHNIS ... e 762
FHEPEAK ..ot 764
FHLESCAl ...ttt e 766
L1 1= PP 768
FHEVAIIT oo 770
L1 = Y 772
L PSP 774
L] L= 72 SR 776
L PSP 778
Il e e 780
I e e 782
L0 = 784
L= 2T 1= P 786
1= S g PP 788
FLB0X ettt 790
I o TH 11 =P 795
[I 10 1 798
[o [0S ST 1 (o N 803
L oo o G 806
[o0 o 72 808
L COUNE ..ttt 809
FLEXECBULIONei e e e e e e e a e en 812
L [S T PSPPI 815
[I (01 o PP 816
L I 010 o = o 818
[e 018 o = oo [819
LRI ..t 820
L I 01V 2o ST 821
FLRAVSBOXSEIVAIUEvuiiiiiii ettt e s 822
PP 823
L I 1 o PP 827
[I o P 829
L = PP 834
L I o= o 1 = 836
L I T U= PSPPSR 837
1100 = P 839
L0 0] 0= 22 P 841
100 843
[07 o N 845
[I 7= o 4 = o P 848
L 07 o Q= o o 849
L 07 141 850
L I 7= 11 1= oo PP 854
[7= 11 = o o P 855
[I 111 N 856
L I 1011 02PN 857
o)1= 858
L U e 861
L S Y - o L 862
o o) | 868
L I 0] o 871

Xi

The Canonica Csound

Reference Manual
[o £ | = oo 872
[IS AN [o o N 873
[IS o) TN 874
[IS (@] o PP 876
[IS (@00] o 2 PP 878
L {00 | PSP 879
[IS 0T 1 o TP 881
L S S (PP 882
[I = 0= o PP 883
LSt SNADGIOUD .ttt 885
[S = PSPPI 886
[S = (@] Lo PP 888
[S S (= PPN 889
[I = S)Y/ 02U UPR PR 890
LIRS AV 893
LBV Al .ot 894
L SNOW . et 895
[IS [T | =] ol PP 896
[IS [T | =] o122 S 900
FLYIABNKGEIHANAIEoniiiiiiiii e e et eaaas 903
[IS 10| =] a1 TP 904
FLSIABNKSELK ..ouitiiitiii et e e e eas 905
FLSIABNK2SELcviiitiiiiiiieee e e e e e e e e e e eas 907
FLIIABNK2SELK .. .euiieiiiiiei ettt e e e e e e 908
[= 1o L= PP 911
[I = | o P 917
[I = 0 = o [P S 923
FLEEIS BN ..oeii e 924
[I 0 TP 925
[I = 928
LTV TTo 7A@ T | PSPPI 929
L U1 To | O 931
1LV TTo | OO PP 933
1LV 1To (@01 i o) TP 935
LT T =g T = P 938
LTV TTo | I PP 941
LU0 [N Lo (= PP 943
(LU 1Yo (@ | PPN 945
fIUIAPrOgramSEIECTceveciii e e e 948
flUIdSEINErPMELNOM ... e e 951
FLVAIUE ..ot e 953
L IR =Y oo 956
[IRV TTo [2] o P 957
[IRV TTo [2] o1 o T 961
DT 1 o PN 963
FINANAL .o e 966
L0 968
100103 970
1100107 | PP 972
10011 0 TN 975
FIIMELAl .o 977
110170 o R 979
L8011 (o 981
L0010 0107 [T PSPPSR 983

Xii

The Canonica Csound

Reference Manual
L8077 =S 985
L0007 T4 L 987
) PPN 989
L) 72O SP 992
L] 111 (= P 998
L0 P 1000
L Lo PPN 1003
L0] 1 o Pt 1005
FOOWZ oo 1007
07 o | PN 1009
10 o | 1011
L L L PPN 1013
L0 P 1017
(01011 PN 1019
1011 PP 1021
L9111 PP 1023
L1015 P 1029
L= 1031
L= o = 00T = 1033
FrAMEDUTTEY ... 1035
L= =YL= £ o TN 1037
1 10 PN 1039
L1001 1041
L1001 1044
L1810 1046
L1001 1 1048
L1 1< 1.0 1= 1051
L1001 110 o 1053
1111 P 1055
1110 = PP 1057
1110 = | 1058
0 o110 0 PN 1059
L0107 P 1061
L1011 1063
FESAMPIEDANK ...eveiei 1065
L1555 Y/ 1067
1552 Y PP UOPPRTRSP 1069
1155 PP 1070
7= 1072
0= 1S o L= N 1074
(0= S PSPPSR UPRPIR 1076
0= 105 1078
(0= 0SS (o 1080
0] 010 .74 1083
(07 0= 1 = PP PRPRPRN 1085
[01< 7= 11 - Y/ 1087
0= 10 |V 1089
0= 010 oS 1093
(01010 7 G 1096
0T (o o 1100
01 (oo N 1102
0170 1104
[0 {01 PR 1106
0 1= 5= <o L PP 1108

The Canonica Csound

Reference Manual
000 (0] o= XS 1109
0 0] PP 1111
0 (7= o PP 1113
0] =11 122N 1115
0 =11 1 N 1120
0] =010 = P 1125
[0 0 1 o PPN 1128
=101 1130
10100 2 1132
0101151 1= o PSPPSRI 1135
01T (= 1137
RITDEIT .. e 1139
RITDEI2 ..o e 1144
RIFEAITY . e 1146
010110 Y= N 1150
000110V 1153
NI FEVEND oo e 1156
01 = PO 1159
1S 70 o 1 1162
1Y PP 1165
PV S e e 1169
1Y PP 1175
01770 | PN 1178
PP 1180
PP 1181
L1101V PSP 1186
0T {0 R 1188
127 o PSPPI 1190
L a2 I= o (= (= T 1192
L= L= =P 1194
L gaT=T0 1= 1= o (= 1196
L= 1= = 1199
g =T 1= P 1201
IMBOESELPIXE] . vuteiieeiie et e e e e e e e e e 1203
L 0= L= 1205
1 PP 1207
11722 PP 1209
1 3o o 1210
120 P 1212
] S 1213
(ot P 1216
1 (o722 P 1217
] 3 o3 AP 1218
0] = P 1220
TNTEEK ettt aaan 1223
1= 1o PP 1225
0L PR 1226
0] A PN 1227
3T PP 1228
3T PP PP 1229
o P P 1231
ED1S 1ttt e 1232
TS = 1.1 | P 1234
INSTIODEL 1237

Xiv

The Canonica Csound

Reference Manual
0 PP 1239
1 PSPPSR 1241
1o PRSPPI 1243
91 1 T 1245
101772 10T 1248
2P 1250
1072 1251
B = o 0 AN 1 o 0] 1 o T 1252
7= o 0 A W To [T0] 1 g0 0= 1253
= Tot (oY AN 1 o e[[P 1254
JACKOAUAIOOULCONNECEuiiiii i e e e e e e e e e e e e e e e e aaaaees 1255
JACKOFTEEWNEE] ... 1256
JACKOINTO et e 1257
= ot (o) 1 o 1 PP 1259
JACKOMIAIINCONNECEuiciiicei e e e e e e 1261
JACKOMIdIOULCONNECEiiiicei e e e e e e e e e een 1262
= ot (o) T T | PP 1263
= Tot (o) [0 1 O | PP 1264
JBOKOOIN ..ttt e e e e e e aea 1265
= o 0] = 111 010 o S 1266
[1 =1 o L 1267
L= PP 1269
L= 2P 1271
[0221 1273
JS oL 11PN 1276
K e et a s 1278
[0S 1S T 1] o USRI 1279
[0S T | o) PSPPSRI 1283
00 (TN 1287
U OPPPTR 1289
S 1110 P 1290
=107 - Y N 1291
o SR 1293
T 0 1295
T o PR 1297
T P 1299
T 3= o 1301
T 3= o 1303
1T = (o PN 1306
T oo 1308
T gL o= o o= 1310
T g 2 o= o = 1311
g g o= A = o L1 S 1312
1T g v (=" (= 1313
INK ENADIE ...t 1315
lINK_iS @NADIEcoeii e 1317
1T 2 4= (o S 1319
1T gL o= 1321
1T gL (] o[0T = 1323
g G (] o[0T = P 1325
1T 0= o P 1327
1T 0= 1329
105 =" | o S 1331
LT 0= | P 1333

XV

The Canonica Csound

Reference Manual

FY = oo Y S SPPN 1335
10Tt oo PP 1338
o o= o 1341
oo N 1344
oo O PPN 1346
oo 2 1348
o111 1350
oo B Y/ 1352
oo o I o 1= 2SR 1354
oo o T o | N 1356
oo o T =P 1358
oo o T 1361
oo 0= = o 1364
FoTo 'S = o | o PN 1366
o0 5" o 1368
FoT0] 0) 6 = 1370
=2 -2 1372
Lo TS == o PP 1375
Lo TS 1970 o] o S 1378
Lo o] Y 1381
01 PP 1384
101 o1] PSPPI 1387
101 PSPPI 1390
L0 0= 2 1393
10T =SSP 1395
LT =S G PP 1397
o)1 T PR 1399
011 =< o o N 1401
0] 7= o 1403
o011 o 1405
001 o 1 1406
o T0 1S o1 P 1408
o T0 1S o1 - P 1410
o T0 1S o1 = P 1412
0 T0 1S 1= 22 1414
0= S 1416
0= o o 1419
0= 7o 1422
10 70T | o 1424
0T o 1425
L= == 1426

1= T o o L= 1427

[UB OPCAIL .eeeie e 1433

11T o PP 1436
01T o= RPN 1438
00 = USSP 1440
00720 3PP PP UPRPR 1444
0010 L= PP 1447
0107 (o) P 1450
QT2 - Y PP 1452
00)= PO RPPPI 1455
0= o o U 1458
1T PP 1461
INIBXADS ..ttt ettt aaan e aeanan 1463

XVi

The Canonica Csound

Reference Manual
QT 0 oo 0 ST 1465
7= 01 | 0 1467
(11720 1 Lo TP 1469
007 PP 1471
0T e - Y PP 1473
11702 oo TP 1475
0101 1477
(10150 = PR 1479
(01150 [T PP 1481
17 0 P 1483
0011 o PP 1485
MIAGIODEL ... 1487
00 T= 4 o 1488
00T 1 7 TSP 1490
00T 1o PPN 1492
00T [PPSR 1494
MIdiChaNNE aftEITOUCK ... v 1496
00T To [T oo TP 1498
MIdiCONITOICNANGEee i e eaeas 1501
100 [{ o PRSP 1503
00TTo o (<=0 | PP 1505
000 11 o PPN 1507
00T To 1= = LU PP 1510
00T Ko 1 3T0] 10 PP 1511
0T T1 1) (=10 Tox o1 1513
00T TR 10) (=100 Y P 1515
(00 Ko] 30110110 v PPN 1517
00T TR 10) =100 o [P 1519
(00To o] 12 PP 1521
0010 o] o [P 1523
0010 10T PP 1526
MIdIPITCNDENG .. .oeee e 1528
MIdiPOIYAItEITOUCK .. eve e 1530
MIdiPrOGramMCNANGEuu i e e e e e e e et e aaa s 1533
0T TR = 1017 T 1535
[101T0 (4= 11010] PP 1537
1071 TP 1540
00117 oL 1542
MENADSACCUIM ...uiieii et e e e e et e et e e e e et e et e et e et e aneens 1544
00117 oo U o PR 1546
1] T P 1548
0T - YN 1550
0011 o TP 1552
MIXEISEELEVELoeiieiiiie e e 1554
MIXEFSELEVEL 1 coveniiiiiii e 1557
MIXETGEILEVEL ... oveiiiiii et aas 1558
Y D 5= 1 o TP 1560
MIXEIRECEIVEu ittt et e e e e e e et e et e et e aeeaas 1562
Y D (== TP 1564
10707 [PP 1566
001070 |17 114) QPR 1569
00707071 (o PR 1574
1700 PP 1576
L0700 =T (o[N 1578

The Canonica Csound

Reference Manual
0070 =T (o[2 PN 1580
170700 o1 1582
1070700 o1 1 1584
00707 o | RPN 1586
101251 o P 1588
0] 2 = P 1590
0] 02C1S o | 1592
0] 10 S PS 1594
L0110 015 o PPN 1596
0100 PSP 1597
1010 0 P 1599
0101 =" o 1601
1S 1603
017/ 2 PN 1605
10177 o 5 1607
01771 o 72 1609
01771 o 1 1611
01770 o 1613
100G 0 = TP 1615
NCNINIS Lttt 1618
NCANIS W L. ee e e e e aeas 1620
0070 £ 1621
1S =0 o T 1623
0] PP 1626
011 1 2T 1629
010 PP 1632
10 =0 i PP 1635
1011) 1 1636
(91010<0] 010 U 7 PP 1637
(01010<;0] 010 LU PP 1639
70151 o PN 1641
(010 /= 1 o PPN 1643
] PPN 1646
0152 3 PP 1648
1S =1 0 S 1650
1] 0 P 1653
150110 1655
0111 0o P 1656
00 = 1Y P 1658
0 (0101 PP 1660
(ol 10 11| PPN 1663
(ol 41T |1 « PPN 1665
(o110 410 [1o S PRURN 1667
o011 oo o 1670
(o= o111 1= SR 1673
(071070 L= S 1675
(01w o] 3| TP 1680
(01 o 1 i P 1686
(015 o1 i PP 1688
(01 w11 1 P 1690
(015 o/ 1 TP 1692
(01 o/ 1 PP 1694
(01 w1 11 SRR 1696
(01 1 11 TP 1698

The Canonica Csound

Reference Manual

OSCiliKtS ..ovvivciiceee,
OSOIKLS 1700
DT 1702
O8I 1704
D 1706
e 1707
S ISIEN 1709
o 1713
OB 1715
U 1717
O 1718
G 1720
QUL 1722
e 1725
U 1726
OUIGLA 1728
g 1729
gy 1731
e 1732
QU 1734
O 1736
QUKL oo 1738
gy 1739
e 1741
e 1742
QUKD - 1744
QUIEIA 1747
O 1749
O 1750
OUIBIIC oo 1752
OUIEIV 1753
SRS 1754
g 1755
D 1757
e 1759
e 1761
R 1763
QUG 1765
S 1767
D 1769
S 1771
QUVEIL 1773
OUtZ .. 1775
e 1776
B o 1777
POOURIR - 1779
Dy 1781
D 1783
S 1785
S 1787
e 1790
P g 1792
P ey 1801
B o, 1804

... 1807

XiX

The Canonica Csound

Reference Manual

07255 [0 [
By 1811
Dy 1813
By 1815
By 1817
By 1819
By, 1821
B 1823
Py 1826
B iy 1829
P& 1831
DD 1834
Py 1837
ety 1840
peak ... 1843
R 1846
B o 1848
By 1852
B 1855
R 1859
PRI v 1861
B 1863
By 1866
By 1870
B 1871
B g 1874
g T 1877
Dy 1880
g 1883
D 1885
By 1887
P oy 1889
S 1893
By 1896
PONMOMIEL v 1898
SRS 1901
B 1903
Y 1905
Bl 1908
B 1910
o 1912
O 1914
Dy 1916
DT 1918
RO 1921
D 1923
Y 1925
D 1927
Bl 1929
S 1932
D 1934
By 1936
DO 1938
P 1939

.. 1941

XX

The Canonica Csound

Reference Manual

ptablelcccoeeeiiiiiiin,
Db 1943
Dby 1946
D 1947
D 1950
SRS 1952
] 1954
S 1958
R 1960
D P 1963
SR 1966
Dy 1968
e 1970
B 1972
B 1975
B 1978
B 1980
By 1982
By 1984
]| 1986
ey | 1987
Bt 1990
D 1992
B 1994
B 1996
B 1998
By 2000
B 2002
By 2004
Doy 2006
e 2009
By oo 2011
By 2013
i 2015
B . 2017
R 2019
B 2021
By 2023
R 2025
SRR 2027
RO 2028
B 2029
B 2031
By 2033
et 2035
B 2038
B 2040
By 2041
B 2044
R 2047
D 2049
B 2051
R 2053
Dy 2055

... 2057

XXi

The Canonica Csound

Reference Manual

PVS2tah ...
i Opcodes......................: ... 2059
i 2060
Dy 2061
D ey 2065
D o 2066
D ey 2069
DY OPEOUES 2070
P 2072
R 2074
I 2076
2 2078
O 2080
PO 2082
oL 2084
OO 2086
FONCOMIY 2088
T 2091
o 2094
MO v 2097
O 2099
O 2101
O 2103
O 2106
MU o 2109
MO 2112
OISO 2115
a7 2117
FEUBPOL 2119
O 2121
oo 2123
PEMOLEOTL 2124
o 2125
FEPIUCK 2126
O 2128
OO 2130
O 2132
OO0 2135
o 2137
SO 2139
e 2141
O 2144
PO 2146
O 2147
VMDD 2149
VIR 2150
oSO 2152
22 2154
[l o 2156
B 2158
IGO0 2160
BT 2161
I 2163
T 2165

.. 2167

The Canonica Csound

Reference Manual
(070 o 2173
0oL 1T 0 P 2175
1o oo <N 2177
S TSP 2179
SLBDLA e a e e e e aae 2180
5G24I PSPPI 2182
SAMPNOIA ..ee 2184
LSS 1010 0710 = 2186
LS o = PRSPPI 2188
LS = = 14 - Y P 2190
LS 0= 0] 7= 10 1= G 2192
S 072 0L PP PRPRP 2193
LS o= 01 =1 o] 1= TSP 2197
LS o= 0 O 2199
SChEOKWHNIEN ... e e e 2201
SChedKWhENNAMEcooiii e e 2204
SCNEAUIE ... 2206
SCNEOWRNEN L. 2209
LS 0] (= 11 0PN 2211
LS 0] (= 11 0 2213
LS o = o 2215
S o = o (1 o 2217
SC PRBSOT ...ttt 2219
£ o 1 o PN 2221
LSS o PP 2223
1SS G (= 2225
LSS = o RSP 2227
LSS 101100 P 2229
S 0 PP PRPRP 2231
1SS 15 Y P 2232
1S = 1 S7=o 1 S 2236
SEHAIENG ..ot 2238
SEHAIFIUSN .o 2239
1SS T T | Pt 2240
SEMTAIREAD ... 2241
1S L AT (= PN 2243
1S T AT 2244
S S |11 .02 PPN 2246
LSS0 (1] PP 2249
LSS (o 1 o PP 2252
LSS 1101 2255
S {0 1 PP RPR PP 2257
S S S 0] (= 0L R 2259
S] PSP 2261
LS5 2263
LS LTS] P 2266
S ST et 2269
LS TS 1 0 2272
SEIOBA . e 2274
£ oo o= P 2277
LS 7= 55 Mo | PN 2280
LS 0] = Y2 T 2283
LS o] = 1Y .o PN 2286
LS o] = Y/ 2289

The Canonica Csound

Reference Manual
£ 0] = 1Y/ 1 N 2291
LS o) PP 2294
LS = 2296
LS 7= = PSP 2299
LS T 1 S 2301
LS T3 | PP 2303
LS o 10 o 2305
LS TP 2307
LS o o O 2309
S T 00 PP 2311
LS 10153 0 2313
SOIGNDEIIS ..t e 2315
LS o= - Y 2317
LS T (< o1 TSP 2319
£ T 1= o1) P 2321
LS T (< G = o = PP 2323
S LBEADIEf ... e e 2325
LS T (< 72U SPPPR 2327
£ T (< 724 P 2329
S B2LADI .o 2331
SHAErB2LADIEf ...t 2333
LS T (< PSPPI 2335
SHAEIBAT .o 2337
SHAErBALADI ... 2339
SHAErBALADIE ... e 2341
£ T (< PP 2343
LS T (<SP 2345
SHAEIBLADIE ... 2347
SHAEIBLADIET ... et e e 2349
LS Lo (= = T P 2351
1S 07 | oo o N 2352
LS 010 L1V o 2354
LS 010 V7= o1 P 2358
LS00 (= xS 2362
LS00 < o [P 2364
S] = PPN 2366
Lo (o PSPPSRI 2367
LS o1 0 [o PSP 2368
S 0 o PSPPSR 2371
LS 7= 11 o [PPSR 2376
LS 7= 11 o S UOPPRTSPIN 2385
LS 7= 11 o | PP 2389
LS oo 1 S PP 2394
LS 07072 [0 .3 2398
S 0= [N 2399
LS 0= = o T 2400
S 0= o 1 1 2401
LS 0= 111 N 2402
S 0= 011 2403
LS 0= 2= o S 2405
S 02 o= 1 1 [PPSR PP 2406
S o< o1 11 .0 PP PP 2407
S oL 11 o 2409
S0 Pt 2411

The Canonica Csound

Reference Manual
LS 011011 PP 2413
LS 015 <1010 N 2415
LS | PP 2418
L PR 2420
L= =,V 7 2422
SN 2424
STKBANAEAWGoviiiiiicee e e e e e eaas 2426
STRKBEETNIEE ...ieiiieee et e e eas 2428
STKBIOWBOovniiiiie e e e e e e e 2430
STKBIOWHOIE ...ceiveeii e e 2432
STKBOWEuiiiiiiiiiie e ettt e et e e anes 2434
S I 2] = S PR 2436
S I (O F- T = TP 2438
S I 3 (01011117 P 2440
S I N U 1= TP 2442
STKMYOICES . oviiiiiei et e e e et r e ans 2444
STKHEVYME ..o e e e e e e 2446
S Y= 110 (o] 1T o PRSP 2448
STKMOUAIBA ...uiviiitiiiii ettt e e e e e e e e et e e aeerans 2450
S 11 €1 oo o PP 2452
STRKPEICFIUL . oveiitiiiie e e e e e e e ens 2454
S I N [07e: 2= o P 2456
STKRESONGLE ... et e e e e e e et eaeaaenas 2458
Y 1 110 L= 2460
S I S = o 0] 1 Y/ 2462
ST SNBKENS ..t 2464
Y I 1S 1101 1 2466
S I S - PP 2468
Y 1 1S (11 o T 2470
STKTUBEBEI .. .ceiiiiiic e 2472
S I QYo e o) o TP 2474
STRKWHRISHIE ..ot 2476
Y I L0 1 = 2478
LS (ol 7= TP 2480
SECNAIK vt 2482
S)Y PP 2483
LS 101 0)] P 2484
S0 | 2486
LS (o= 1 TP 2488
S 1 0] PP 2490
LS L 1010 N 2492
LS == o PP 2493
LS [(o010 T TP 2495
S o . PPN 2497
LS U100 (= NSRRI 2499
LS U100 (PP 2500
LS (1= o [PR 2502
LS 1= 21PN 2503
LS (g0 < TP 2504
S OWEIK et 2506
LS L 10 (= PP 2507
LS L] 410 (2P 2509
LS (= PPN 2510
LS TS U o PP 2512

XXV

The Canonica Csound

Reference Manual
SEFSUBK .t ae 2514
LS 11 (0o O 2515
LS 1 10 | ST 2516
LS 1 (o PP 2517
LS 1 (0 RSP 2518
S L]0 0= PRSP 2519
SETUPPEIK et 2520
LS T o] PP 2521
LS T o] 0 T PSPPSR 2524
LS 0 PPN 2525
SUIMIBITAY vttt e e et e e e et e e e e e e e e e et e e e e e e e e e e e e e et e e et e e e en 2527
LSV {1 PP 2529
LS Yot = 1 2532
LS Y100 TP 2535
LS Yot o] 7= o 2537
LSS [0 PPN 2541
L1 O R 2543
12! o PP 2546
122! o o PP 2548
L= o) = S 2550
L2210 = PP 2552
L= 0] 1= o1 oY 2553
L= o)L= {1 (= USSP 2556
1= o)L= {1 (o PP 2558
1= 0] =0 2560
12210 = PSP 2561
1¢=10] 1= ol oY 2564
1= 0] =0 . 2565
L= o) =] APPSR 2566
L= o= T o 11 RSP 2569
BB BIW e 2571
12510 =T PP 2575
FBDIEIMIX e e e ea 2578
1¢=10] 1= oo [2580
122 o] = - PP 2582
122 o= <o P 2585
tADIESNUTTIE L. 2587
1= o)L= PP 2590
L= o)L= PSP 2593
FBDIBWKE e 2596
BBIEXKL ..ot e 2598
1= 0= o [P 2601
TADMOIPN e 2603
tADMOIPNA ... 2606
tADMOIPEK ... 2608
tADMOTPNI ... 2611
1721 0] 0 - Y 2614
L2210 1= o PP 2615
1221015 0 0 0 USRS 2616
L= 224 0 V£ 3PP 2618
FBMBOUNING ... e 2619
1210 PP 2621
L2512 0 S UPPPR 2623
L6211 Y TP 2625

The Canonica Csound

Reference Manual
L= 11 01V 7Z2 TP 2627
L1 0)Y/o: PP 2629
1010107 R 2632
1510170 2635
1= 0010701 o= | 2637
1= 00197017 RPN 2639
111 [0 (o TP 2641
L0010 S o [P 2643
L= L PR 2646
LT 0= L C PPN 2648
LLT 1= TP 2650
L1 2652
L0040 LU RPN 2655
LAY TP 2657
L1121 o TP 2659
10] = PN 2661
L0010 1=: PPN 2663
L0] = Gt 2665
L= 070 (o)1 [P PRN 2667
L0 Y o [2669
LU= <o PRSPPI 2671
L 01 < | o 2673
LU= = | PSPPI 2675
L0 05\ 2677
L0 11 TP 2679
14 20 == 2681
1o o= 2683
1005 <o N 2685
LU L= o P 2689
L0 0T SRR 2691
L1001 PP 2693
L1 o= [RTPPRN 2695
LU 111 L TSP 2697
1S o] 1 PN 2699
L0010 1 PN 2701
TUNNIO T 2 e e 2703
L0110 0 PPN 2706
L8770 2707
01011 7= 15 1o PP 2709
8o 1 PP 2711
00017 =0 PP 2713
810752 10 01 o 2716
0170 o (o]0 s TR TP 2718
01 o PP 2721
Az o o | PSPPSR 2724
LTz [o [P 2726
(T2 (o [2729
LTz [0 VPSPPI 2731
A2 [0 1Y P 2734
Ao =L 2736
A2 0P 2739
ATz < T 2742
1 0o U 2744
(T4 07=T0) 11010 V= 2747

The Canonica Csound

Reference Manual
17400 o P 2750
A 0= o0 1070V T 2753
VDBDLO ..o 2756
A 0= o)1 30 Y 2758
VDB e 2760
L0202 00 Y 2763
VB8 e 2766
VOBPBIMOVE ... e e 2768
[T 07=T o] S 1 T 2771
VBZ e 2774
AV 070740110 Y 2776
1= | - PSP 2778
Ao o PP 2781
L0072 PP 2784
(000 124 S PP UPPTRPPT 2788
L0 24 | PP 2790
A0 24 o SO UPPPPRN 2792
£ 1|« TS 2795
Lo o oY PRSP 2798
AL oY P 2801
A L= - YOI 2803
A0 L= = Y2 PSPPSRI 2805
A 1= 2807
Ao 1= - (o 2809
Ao 1= 2811
AL 1= - LT PN 2813
(000 1= - Y0 1Yo P 2815
(VLo L= o 0 AT 2817
VOBIAYK e ae 2819
10T A 2820
10T AT P 2823
(=0 = - LY 2825
A Lo oSSR 2826
LV (o PRSPPI 2828
AV (o PP 2831
LTS0S o PP 2833
LV 0 Y PP PPP 2835
12240V P 2838
VIS e 2840
A o) 2842
A1 o= o TSP 2844
AV ST 2846
£ T S PP 2849
(AL = 2850
VIOWTES L.t e et e et e ae 2852
L7007 o PP PRPRP 2854
1Y 01T 1 o SO SPTN 2856
12210 N 2857
A0 210 2861
1748010 2863
1748210 1Y 2866
1Y T o= TSP 2868
L00 = o o PP UPTPT 2871
A 0] 7= S =S o PN 2876

XXVii

The Canonica Csound

Reference Manual
1770 PP PP 2878
VPOW ettt ettt aas 2879
17700 P 2883
VPOWNY ettt ettt ettt et et e e e et et et et et et e et e r e e e e e 2886
110 Y N 2889
VPVOC ettt ettt ettt e e e e e e e e e e e e e e e e 2891
1= 1o | 2894
L= 1o 2897
AVES =100 T MY =0 (o oo 2900
VStDANKIOAH ... ccviiii e 2902
A (<o) ORI 2903
A2 3 PPN 2905
L2 (01 (o Pt 2907
L2 100 oL | Pt 2909
A1 L0 (=PRI 2011
VSIPaAramSEL, VSIPArAMIQEL ... 2913
AV 0] (00 S < PP PP 2915
12 T PN 2916
1 U P 2919
A= o =1 PP 2921
A= o = P 2923
VEBDLEK et 2925
(= o= PP 2927
VEBDIOWI Lo 2929
VEBDIEUWK .t e e aaa 2930
VEBDIEWA ... 2932
L= o PP 2934
1= oSS 2936
1Y = o 7= LU 2938
L4 01 2940
VEAOWK e e 2941
(4011 Nt 2942
A LT o PP 2943
(= === < PP 2944
(VL= 15 0 o . P 2946
1TL= oL N 2948
1T o0 2951
WODOWEDELe it 2953
(VL0 o= 5 2955
1o o - P 2957
1T o 1 0= P 2959
WOPIUCK oot e e e e e e e 2961
WOPIUCKZ .. e e e e e 2964
1T 8 o L= U 2966
1T 8 10 L= 2969
WHETE e e 2972
1T T o) = o 2974
1T Lo 7= - 2976
LT L= N 2979
LTS = 0 PP 2980
17110 o 2982
1T = PP 2985
(L == - (o o N 2987
1T LC=: £ -1 o PN 2989

The Canonica Csound

Reference Manual
D= 0 L PP 2991
(L PPN 2993
(0] | PRV 2995
DS = 0117 1 2997
D = 5 7= o PRSPPI 3000
D o= TP 3001
D o= 1 [PPN 3005
D1 - 1] 0 PP 3009
D4/ 1 PRV 3013
DS o | 1S 3015
ZACL 3017
2| (1 411 S SPPSPPPN 3019
2 10110 R PP 3022
2 | ST SPPRSPPPN 3024
2 o PP PPPRPR 3026
2 1 SO 3028
2 11 0 RPN 3030
40| 1 o - 3033
ZAf 1POIE MOAE .. evecii e 3035
40| 2 oo [3037
ZAf 2P0IE MOAE .. ceeiii e 3039
P20 | =" [0 (< S 3041
A 1L = 2SR 3043
2 PP 3045
ZIWV et e e et e et e et e et e et e e et e et e e et e e e aanaaes 3047
411/ 0 PP RP PPN 3049
2 (o PP 3051
(2700 PSPPSR 3053
2 PP 3055
311 P 3057
3111 2 N 3059
Score Statements and GEN ROULINESuuuiiiiiiiieeeiiiie et e et e e e eeeat e e e eain e eaens 3062
SCOME SEALEIMENTS ... ettt ettt et e e e e et e e et e e e e e e eenns 3062
a Statement (or Advance StAEEMENE)oivviiiiiiiciie e 3063
D SEAEMENE ... e 3065
OIS = <1 11 o | PSPPSRI 3067
d Statement (De NOte SEAEMENT)vuiviinieii e e e e e e e e ees 3069
RS = (<0< | PP 3071
f Statement (or Function Table Statement)cooeviiiiii i 3073
i Statement (Instrument or Note Statement)oooovieiiiiiiii e 3075
m Statement (Mark Statement)ooveuiiiiiii e 3079
(IS = = 111 o | PP 3081
(0[RS = = 01 o | PP PP 3083
r Statement (RePEat SEAEMENL)vuiiiniiii e e e e e e 3085
S STAEIMENT ... 3087
t Statement (TEMPO SEALEMENL)iven i e e e 3089
VRS = (< 10T o | PP 3091
X SEALEIMENT ..ottt 3093
y Statement (or Seed SEAEMENT)uuiiieiiii e e 3095
RS = = 1.1 | 3097
S = .1 | 3100
GEN ROULINES ...ttt e et e e e e e e e ran e 3100
LN P 3104
GENDZ .t 3107

XXX

The Canonica Csound

Reference Manual
GEN DS L.t 3109
GEND . 3112
GENDD L.t 3115
GENDB ..ottt 3117
LN P 3119
GENDB ..t 3121
GENDD L.t 3123
GENLD Lt 3126
LN PP 3128
GENLZ L. 3130
L N P 3133
GEN LA < s 3137
L N P 3140
L N P 3148
GEN L7 e 3151
L N P 3153
GENLD L.t e 3156
GEN 20 <. 3158
GEN 2L ..t 3161
GEN 23 . e 3165
GEN24 . s 3167
GEN 2D . e 3169
GEN 27 s 3171
GEN 28 .. 3173
GEN B ittt 3176
GEN B L. e 3178
GEN B e e 3179
GEN B e e et 3181
GEN B e s 3184
GENAD ..o 3187
GENAL .. e 3189
GENAZ . 3191
GEN S .t s 3193
GENAD L. s 3194
GEN D L L.t 3196
GEN 2 .t e 3199
GENLANN L. 3202
L€ N = o LS 3204
GENSONE ...ttt ettt 3206
GENQUAODEZIESceiiiii e e e e e e e 3208
GENTAIEY et e e e 3211
GENWEVE ... et e e e 3216
GENPBASYNLN ...coeice e 3219
Experimental Orchestra Opcodes and GEN ROULINEScc.oveiviiiiiiieiiiecciee e, 3223
Experimental Orchestra OPCOUEScuuiiiiiiiiii e e 3223
o = P 3224
CUAASYNEN ...t 3227
(or 80 1= S T o (1 0o 3229
Deprecated Orchestra Opcodes and GEN ROULINESvevviieiiiiieiiieeciieeeieeeieeaines 3231
Deprecated Orchestra OPCOUESuvuiiii e 3231
BDELAIAN ... e 3232
BDEXPINA L. 3233
o7 L1 0P 3234
0] = 1 3235

The Canonica Csound

Reference Manual
=0 = 01 PP PP 3236
=T (00 0] o1 3237
= g =" Vo PP 3238
=0 Tor= 1[0 0|V 3239
0 T0 1SS o 3240
BIDOW ettt ettt et 3241
T - PP 3242
L T =0 (o PP 3244
=011 =0 o P 3245
AWVEIDULL . oee e 3246
0] 104 1110 (= XTI 3247
0] 104 011 o (o TP 3249
(o [0 ox QPP 3251
0111 GO 3252
TOBLArANG ... oviee e 3254
TDEXPIN ..o 3255
7= 18 o 0 3256
[{1 16 PPN 3257
[{2 PR 3258
[T [PP 3259
1= o] = o 3260
0 =01 3261
118 =" To TP 3262
13T [TP 3263
3T o220 TP 3264
131K (1o PP 3265
LIS 1] 1= PP 3266
LIS 1T 1= PP 3267
Lo i PR 3268
o P 3269
o) o L1 2 PP 3270
0] o L1 PN 3271
0= PP 3272
Lo LU (o 2 PP 3273
0 (oS 3274
([0 0 11 o 7= PP 3275
0011 o TP 3276
01011 3277
] oo 1 (o Y/ 3278
] 0 L0 1TSS o 3279
o0 PP PPPRP 3280
L] o I PP 3281
724 o) I PP 3282
1S N0 [g TP 3283
1S T [22 PP 3284
1S T T0 5 £ PP 3285
(1S T [¢ TP 3286
=0 <o o 3287
=01 = o o 1Y 3288
170 = 011D PRSP 3289
1 7=!o] =TT 3290
LT =)o PP 3291
105 1] =0 o PP 3292
TWEIDUIL Lot et e e e e e e e e e aaees 3293

The Canonica Csound

Reference Manual
KBBLAraNd ... 3294
011 01 1 PN 3295
o 1 [Y/ 3296
0 L1 0 22N 3297
0 L1 0] 2 3298
N 110 o PR 3299
R0 L1 0 o N 3300
S04 o 3301
1 7P 3302
0= 11 P 3303
LT 0= o PSPPSRI 3304
0] o PR 3305
0111 = P 3306
R0 1o 7SR 3307
01U o P 3308
0111 o P 3309
01111 o) o N 3310
011 1 oo P 3311
KPCBLICNY ...oveii e e e 3312
10 1SS o o 3313
410 3314
=0 12 PP 3315
=0 X PP 3316
= o PP 3317
= PP 3318
KEADIESEY vt 3319
Q1= 0 o PP 3320
0T =0 o ORI 3321
KWEIDUIL ..o e e e e e e e e e aeas 3322
LS 010 o PPN 3323
PEAKK .ttt a s 3325
10 o PP 3326
10 o T P 3328
810 o PP 3329
010 o PR 3331
LS o0 01 (o 11 | PP 3332
LS o0 a1 (o 11 (=S P 3334
LS = o P 3335
Deprecated GEN ROULINESoivvieiiiieii e e e e e e et e e e e e e ean s 3336
GEN 22 .. s 3337
The ULty PrOgramS et e e e e e e e e e e e et e e ea e eaes 3338
(D11 o (0] 1= S 3338
SOUNAFITE FOMMELS. ...vvtieiiii e e e e e aa s 3338
Analysis File Generation (ATSA, CVANAL, HETRO, LPANAL, PVANAL) ... 3339
File QUEries (SNDINFO)covuviiiiiii e 3349
File Conversion (HET_IMPORT, HET_EXPORT, PVLOOK, PV_EXPORT,
PV_IMPORT, SDIF2AD, SRCONV) ...uuiiiiiiiiiieiiiiii ettt e s 3350
Other Csound Utilities (CS, CSB64ENC, ENVEXT, EXTRACTOR,
MAKECSD, MIXER, SCALE, MKDB) ...cccuuiiiiiiiieiiiiiie e 3367
L= oo PP 3381
Events, Lists, and OPErationsc.uviiuniiiiieiiiee e e e e e e e e e et e e e e eens 3381
Writing a Cscore Control Programcceueieiiiieeiii e e e e e e e e aens 3384
Compiling & CSCOMe Programceuuueiiiieieiee e eeie e e e e e e et e e e e et e e aaneeaanaes 3388
More Advanced EXaMPIESoiviiiiii e 3391

XXXl

The Canonica Csound

Reference Manual

(0L o7 PSPPSR 3393
V. Opcode QUICK REFEIENCEuiiiiicii e e e e e e e e e e eans 3398

Opcode QUICK REFEIENCEuuiiiii e e e e e et e e e e e e e e aneees 3400
AL LISt Of EXAMPIES ..oen e e 3460
1 (ox g T 0 == Mo o 3503
C. SOUNd INENSILY VAIUESuuiii it e e e e et e et e et e e e e eaens 3507
D. FOrMANT VAIUBS ... coviciii it e e e e e e e e e e e et e e et e e e eanaes 3508
E. Modal FreqUENCY RAIOSciuiiiiieeii et et e e e e e e e e e e e et e et e e e e e aanaees 3512
F. WINAOW FUNCHIONS ...ttt e e e e e e e e e et e e e e et e e st e e et eeaneeeaes 3514
G. SOUNAFONE2 FIlE FOIMALvuiiii e e e e e e e e e e e eaa s 3519
H. Csound Double (64-bit) vs. Float (32-Dit)ccoueiiiiiiiiicii e 3520
L1105 3521

XXXIV

Preface

Table of Contents

Preface to the CsoUNd ManUELoooiiiiiiii e et e e e e e e XXXV
History of the Canonical Csound Reference Manualcoouvveiiiiiiiiiiviii e XXXVi
100 0)Y/ 1T |01 01N [1! R XXXVii
Getting Started With CSOUNGovvniiiiceee e e e e e e e ea e eaes XXXIX
What's NeW N CSOUN B.09.0couuniiiiiiie et e e e e e e e et eeeaa s xli

Preface to the Csound Manual

Barry Vercoe, MIT MediaLab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different man-
ner of control. Direct synthesis generates waveforms by sampling a stored function representing asingle
cycle; additive synthesis generates the many partials of a complex tone, each with its own loudness enve-
lope; subtractive synthesis begins with a complex tone and filtersit. Non-linear synthesis uses frequency
modulation and waveshaping to give simple signals complex characteristics, while sampling and storage
of anatural sound alowsit to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instrumentsin an orchestra, and 2) from the events within ascore. An orchestraisreally
acomputer program that can produce sound, while ascoreis abody of data which that program can react
to. Whether arise-time characteristic isafixed constant in an instrument, or avariable of each notein the
score, depends on how the user wants to control it.

The instruments in a Csound orchestra (see Syntax of the Orchestra) are defined in a simple syntax that
invokes complex audio processing routines. A score (see The Standard Numeric Score) passed to this
orchestra contains numerically coded pitch and control information, in standard numeric score format.
Although many users are content with this format, higher level score processing languages are often con-
venient.

The programs making up the Csound system have along history of development, beginning withthe Music
4 program written at Bell Telephone Laboratoriesin the early 1960's by Max Mathews. That initiated the
stored table concept and much of the terminology that has since enabled computer music researchers to
communicate. Valuable additions were made at Princeton by the late Godfrey Winham in Music 4B; my
own Music 360 (1968) was very indebted to hiswork. With Music 11 (1973) | took adifferent tack: thetwo
distinct networks of control and audio signal processing stemmed from my intensive involvement in the
preceding yearsin hardware synthesizer concepts and design. This division has been retained in Csound.

Becauseit iswritten entirely in C, Csound is easily installed on any machine running Unix or C. At MIT it
runs on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGl's under 5.0, on IBM PC's under
DOS 6.2 and Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single language for
defining the audio signal processing, and portable audio formats like AIFF and WAV, users can move
easily from machine to machine.

The 1991 version added phase vocoder, FOF, and spectral datatypes. 1992 saw MIDI converter and control
units, enabling Csound to be run from MIDI score-filesand external keyboards. In 1994 the sound analysis
programs (Ipc, pvoc) were integrated into the main load module, enabling all Csound processing to be run

XXXV

Preface

from a single executable, and Cscore could pass scores directly to the orchestrafor iterative performance.
The 1995 release introduced an expanded MIDI set with MIDI-based linseg, butterworth filters, granular
synthesis, and an improved spectral-based pitch tracker. Of special importance was the addition of run-
time event generating tools (Cscore and MIDI) alowing run-time sensing and response setups that enable
interactive composition and experiment. It appeared that real-time software synthesis was now showing
some real promise.

History of the Canonical Csound Reference
Manual

Thisinitia version of thismanual for early versions of Csound was started at MIT by Barry L. Vercoeand
maintained there during the 1980's and start of the 1990's. Some of the manual comes from documents for
programs like Music11 from the 1970's. This original manua was improved and worked on by Richard
Boulanger, John ffitch, Jean Piché and Rasmus Ekman.

This manual led to the Official Csound Reference Manual, still located at: http://www.lakewood-
sound.com/csound [http://www.lakewoodsound.com/csound/hypertext/manual .htm], for Csound version
4.16, November, 1999, which was maintained by David M. Boothe.

A pardlel version of the manual called the Alternative Csound Reference Manual, was developed by
Kevin Conder using DocBook/SGML [http://www.docbook.org/]. Thisversion later becamethe Canonical
version.

When Csound was licenced as LGPL by MIT in 2003, the manua was licenced GFDL and placed on
Sourceforge along with the sources of Csound.

In the winter of 2004, the Canonical Manual was converted to DocBook/XML by Steven Yi to alow for
more people to be able to compile and maintain the manual.

The manual is currently maintained by Andrés Cabrera with continuous contributions from the Csound
Community.

The manua continues to be a community run project that depends on the contributions of developers
and users to help refine the coverage and accuracy of its contents. All contributions are welcome and
appreciated.

Table 1. Other Contributors

Mike Berry

Eli Breder
Michael Casey
Michael Clark
Perry Cook
Sean Costello
Richard Dobson
Mark Dolson
Dan Ellis
Tom Erbe

Bill Gardner

XXXVi

http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.docbook.org/
http://www.docbook.org/

Preface

Michael Gogins
Matt Ingalls
Richard Karpen

Anthony Kozar

Victor Lazzarini

Allan Lee

David Macintyre
Gabriel Maldonado
Max Mathews
Hans Mikelson
Peter Neubécker
Peter Nix

Ville Pulkki
Maurizio Umberto Puxeddu
John Ramsdell
Marc Resibois

Rob Shaw

Paris Smaragdis
Greg Sullivan

Istvan Varga
Bill Verplank
Robin Whittle
Steven Yi

Francois Pinot
Andrés Cabrera
Gareth Edwards
Joachim Heintz
John ffitch

Oeyvind Brandtsegg

Menno Knevel
Felipe Sateler
And many others.

This list is by no means complete. More information can be gathered from the Changelog file in the
manual's sources repository.

Copyright Notice

This version of the Csound Manual ("The Canonical Csound Manual") is released under the GNU Free
Documentation Licence [http://www.gnu.org/licenses/fdl.txt]. Below are listed, for historical purposes,
previous copyrights and requests for credit from previous authors.

XXXVii

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

Preface

Previous copyright notices

Copyright (c) 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.1.T., Cambridge,
Massachusetts, with partial support from the System Development Foundation and from National Science
Foundation Grant # |RI-8704665.

Manual

Copyright (c) 2003 by Kevin Conder for modifications made to the Public Csound Reference Manual.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of thislicenseisavailable
in the examples sub-directory [examples/fdl.txt] or at: www.gnu.org/licenses/fdl.txt [http://www.gnu.org/
licenses/fdl.txt].

This Csound language documentation in this manual is derived from Kevin Conder's Alternative Csound
Reference Manual, which in turn is derived from the Public Csound Reference Manual.

Copyright 2004-2005 by Michael Gogins for modifications made to the Alternative Csound Reference
Manual.

Thislegal noticeisfrom the Public Csound Reference Manual: “ The original Hypertext Edition of theMIT
Csound Manual was prepared for the World Wide Web by Peter J. Nix of the Department of Music at the
University of Leedsand Jean Piché of the Faculté de musique del'Université de Montréal. A Print Edition,
in Adobe Acrobat format, was then maintained by David M. Boothe. The editors fully acknowledge the
rights of the authors of the original documentation and programs, as set out above, and further request that
this notice appear wherever this material isheld.”

The Public Csound Reference Manua's last known network location was http://www.lakewood-
sound.com/csound/hypertext/manual .htm.

The Alternative Csound Reference Manual's network location, for both the Transparent and Opaque
copies, is http://kevindumpscore.com/downl oad.html#csound-manual .

The Csound and CsoundAC Manual's network location is http://sourceforge.net/projects/csound.

Csound and CsoundAC

Csound is copyright 1991-2008 by Barry Vercoe, John ffitch and others.
CsoundAC is copyright 2001-2008 by Michael Gogins.

Csound and CsoundAC (formerly CsoundV ST) are free software; you can redistribute them and/or mod-
ify them under the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version.

Csound and CsoundAC are distributed in the hope that they will be useful, but WITHOUT ANY WAR-
RANTY ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. Seethe GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser Genera Public License along with Csound and
CsoundAC; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

XXXViii

examples/fdl.txt
examples/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://kevindumpscore.com/download.html#csound-manual
http://sourceforge.net/projects/csound

Preface

Virtual Synthesis Technology

Virtual Synthesis Technology (V ST) Pluglninterfacetechnology by Steinberg Soft- und Hardware GmbH.

Getting Started with Csound

Downloading

In caseyou don't already have Csound (or have an ol der version) download the appropriate Csound version
for your platform from the Sourceforge Csound Download Page [http://sourceforge.net/projects/csound/
filed/]. Installers for Windows have '.exe' extension and for Mac ".dmg'. If the installer's filename ends
in'-d' it means the installer has been built with double precision (64-bit) which provides higher quality
output than the ordinary float precision (32-hit). The float versions provide quicker output, which may be
important if you're using Csound in areal-time setting. Y ou can a so download the sources and build them,
but this requires more expertise (See the section Building Csound).

It may also be useful to download the most recent version of this manual, which you will aso find there.

Running

Csound can berun in different ways. Since Csound isacommand line program (DOS in Windows terms),
just clicking on the csound executable will have no effect. Csound must be called either from the comput-
er's command line or from a front end. To use Csound from the command line, you must open a Termi-
nal (Command Prompt or DOS Prompt on Windows, or Terminal on MacOS). Using Csound from the
command line can be difficult if you've never used aterminal, so you may want to try to use one of the
front ends, either QuteCsound, which isincluded with the latest distributions, or another front end. A front
end is awindow-based (not necessarily Windows-based) program that assists running Csound. Most front
ends include text editors with which you can edit csound files, and many include other useful features.

Whether being run from a front end or being executed from the command line, Csound needs two things:
* A Csound file (".csd' or possibly an ".orc' and a'.sco' file)

» A list of command lineflags (or configuration options) that configure execution. They determine things
like output filename and format, whether real-time audio and MIDI are enabled, which audio output to
usefor real-time audio, the buffer size, the types of messages printed, etc. These options can beincluded
in the ".csd' file itself, so for the examples included in this manual you shouldn't need to worry about
them. Front end programs often have dialog boxes in which the command line flags can be set. The
complete and very long list of available command flags can be found here, but you might want to have
alook therelater...

See the section Configuring if Csound is giving you trouble.

This documentation includes many '.csd' fileswhich you can try out, and which should work directly from
the command line or from any front end. A simple example is oscil.csd [examples/oscil.csd], which can
be found in the examples folder of this documentation. Y our front end should allow you to load the file,
and the front end should have a 'play' or ‘render' button that will alow you to hear the file. If you want
to experiment with the file, you're well advised to use the front end's 'Save As..." command to copy it to
some other directory on your hard drive, such as a'csound scores' directory that you create.

Note for MacCsound users

Y ou might need to remove al thelinesfrom the command options slot in order for the manual
examplesto work.

XXXIX

http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
examples/oscil.csd
examples/oscil.csd

Preface

Y ou can also try the manual examples from the command line. To do this, navigate to the examples direc-
tory of the manual using something like this on Windows (assuming the manual is located at c:\Program
Files\Csound\manual\):

cd "c:\Program Fil es\ Csound\ doc\ manual \ exanpl es"

or something like:

cd /manual di rect ory/ manual / exanpl es

for the Mac or linux Terminal. Then type:

csound oscil.csd

The example files are configured to run in real time by default, so with this command you should hear
atwo-second sine wave.

Writing your own .csd files

A .cd filelooks like this (thisfile is oscils.csd [examples/oscil s.csd]):

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/nmdi flags here according to platform

- odac ;;;realtine audi o out

;-1 adc ;;;uncomment -iadc if realtinme audio input is needed too
For Non-realtine ouput |eave only the line bel ow
-0 oscils.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runent s>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

instr 1

iflg = p4

asig oscils .7, 220, 0, iflg
outs asig, asig

endi n
</ Csl nst runent s>
<CsScor e>

i
i
e
</ CsScor e>

</ CsoundSynt hesi zer >

1020
1322

; doubl e precision

Csound's .csd files have three main sections between the < CsSynthesizer> and </CsSynthesizer> tags:

e CsOptions - Includes the Command Line flags specific to this particular file. These options can also be
set using the .csoundrc file, which you can edit in atext editor, or directly in the command line. Some
front ends also provide ways to specify global or local options.

e Cslnstruments - Contains the instruments or processes available in the file. Instruments are defined
using theinstr and endin opcodes. The Csl nstruments section also containsthe Orchestra Header, which

xl

examples/oscils.csd
examples/oscils.csd

Preface

defines things like sample rate, the number of samples in a control period, and the number of output
channels.

» CsScore - Contains the 'notes' to be played, and optionally the definition of f-tables. Notes are created
using the i statement, and f-tables are created using the f statement. Several other score statements are
available.

Anything after a semicolon (;) until the end of the line is acomment, and isignored by Csound.

You can write .csd filesin any plain text editor, such as Notepad or Textedit. If you use aword processor
(not recommended), be sure to save the file as plain text (not rich text). Many front ends include advanced
editing capabilities, such as syntax highlighting and auto-completion of code.

You can find an in-depth tutorial on getting started with Csound written by Michael Gogins here [http://
michael -gogins.com/archivestutorial .pdf].

What's new in Csound 6.09.1
Release Notes for Csound 6.09 (2017 May)

A mixed bag of new opcodes and many fixes and improvements.

Also asusual there are anumber of internal changes, including many memory leaks fixed and more robust
code.

» New opcodes:

select -- sample-by-sample comparison of audio selecting the output.

midiarp -- generates arpeggios based on currently held MIDI notes.

hilbert2 -- a DFT-based implementation of a Hilbert transformer.

Ableton Link opcodes -- for synchronizing tempo and beat across local area networks.
pvstrace -- retain only the N loudest bins.

several new unary functions/opcodes for k-rate and i-time numeric arrays: ceil, floor, round, int, frac,
powoftwo, abs, log2, 10g10, log, exp, sgrt, cos, sin, tan, acos, asin, atan, sinh, cosh, tanh, cbrt, limitl.

several new binary functions/opcodes for k-rate and i-time numeric arrays: atan2, pow, hypot, fmod,
fmax, fmin.

limit -- numeric limiting within a given range (for arrays).

tvconv -- atime-varying convolution (FIR filter) opcode.

liveconv -- partitioned convolution with dynamically rel oadabl e impul se response.
bpf, xyscale, ntom, mton -- (from SuperCollider?).

OSCsendA -- asynchronous version of OSCsend.

OSCsend -- now implemented directly using system sockets. Old version using liblo has been kept
as OSCsend_lo.

OSCraw -- to listen for all OSC messages at a given port.

xli

http://michael-gogins.com/archives/tutorial.pdf
http://michael-gogins.com/archives/tutorial.pdf
http://michael-gogins.com/archives/tutorial.pdf

Preface

« sorta and sortd-- sort elements of an array.
* dot -- calculates the dot product of two arrays.

e zero delay filters -- zdf_1pole mode, zdf 2pole mode, zdf ladder, zdf 1pole and zdf_ 2pole,
diode_ladder, K35_hpf and K35_1pf.

 product -- takes anumeric array (k or i-rate) and calculates its product.
 supercollider ugens -- sc_phasor, sc_lag, sc_lagud, sc_trig.
* Orchestra:
* Including a directory of UDO files no longer fails if more than about 20 entries.
It was possible for kr, sr, and ksmps to be inconsistent in one case, no more.
* Macro names better policed and bracket matching.
¢ Octal values as\000 can bein strings.
¢ (from 6.09.1) In aUDO the out* opcodes now work, where before it was working only sometimes.
» Score:
» Improved line number reporting in r opcode and case with no macro implemented.
* m and n opcodes fixed.
» Expansion of [...] corrected and improved.
 Stringsin scoresimproved.
» The) character can bein amacro argument if it is escaped with \.
» Use of the characters e or s could lead to errors; now fixed.
* Macro names better policed, and bracket matching.
e p2and p3 are now at higher precision, no longer truncated to 6 decimal places.
» new opcode d to switch off infinite notes (denote); same asi with negative pl.
» named instruments can be turned off with i if a- followsthe".
¢ (from 6.09.1) if an r-opcode section ended in e-opcode it used to stop early.
* Options:
* jack midi module now can report available devices under --midi-devices.
¢ (from 6.09.1) defining smacros and omacros on command line only happens once.
¢ (from 6.09.1) defining smacros from command line now works.
» Modified Opcodes and Gens.

« ftgentmp improved string arguments.

xlii

Preface

hdf5read opcode now reads entire data sets when dataset name string is suffixed with an asterisk.
use of non power-of-two lengths now acceptable where before it was inconsistent.

ampmidid optionally can be aware of Odbfs.

dust and dust2 at k-rate now conform to the manual (NOTE: thisis an incompatible change).

In prints the format %% now prints one %.

OSClisten can be used with no data outputs.

GEN18 corrected to write to requested range.

sockrev now can read strings.

vbap system can in some cases allow arbitrary number of speakers via arrays (work in progress).
Websocket server can only accept one protocol output, so limiting intype to just a single argument.
sum opcode will also sum elements of an array.

Overloaded pvs2tab and tab2pvs now can create and use split magnitude and phase arrays.

Utilities:

dnoise fixed.

Frontends:

Removed HTML5 Csound editor which has quit working.

Emscripten: Emscripten Csound (asm.js) now requires sourcing in CsoundObj.js and FileList.js sep-
arately from libcsound.js. Thisisto accommodate using the same JS API with either asm.js or wasm
backends.

CsoundQT: CsoundQt 0.9.4 is announced: https://github.com/CsoundQt/CsoundQt/blob/devel -
op/release_notes/Release notes 0.9.4.md [https://github.com/CsoundQt/CsoundQt/blob/devel op/re-
lease notes/Release%20n0tes?6200.9.4.md].

Windows installer with CsoundQt includes PythonQt.

Bugs Fixed:

pwd works on OSX.

Fencepost error in sensLine fixed.

OSCsend corrected for caching of host name.

Bug in push/pop opcodes fixed (this opcode is now a plugin and deprecated).
Bug in sprintf removed.

Bug in soundin removed.

losci/losci3 fixed in case of long tables.xliii

https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md

Preface

* inrg was broke for awhile.

 Partikkel channelmask panning laws had an indexing error, now fixed.

* jack audio module now allows for independent numbers of in and out channels.

* Bug in string copying fixed.

« Bug in hdf5read where if two hdf5read opcodes were placed in seriesin an instrument, the argument
names of the second opcode instance would be incorrect due to directly changing the last string
character of the first when reading an entire dataset.

» Memory leaks fixed in some plugin opcodes.

e System Changes:

* soundin now uses the diskin2 code.

« out family of opcodes reworked to reduce interleaving costs and to take proper regard if nchnlsvalue.

* (from 6.09.1) acrash on Linux i386 removed relating to server mode.

* AP

» New csound_threaded.hpp header-only facility, obviating need for csPerf Thread.cpp object in some
projects.

* Added GetA4 function.

« New framework for plugin opcode development in C++ using Csound's allocator.

* Added StrDup function.

» Boost dependencies removed from Csound interfaces, CsoundAC, and CsoundV ST.

 (from 6.09.1) Two new API function, csoundSetSpinSample and csoundClearSpin.
 Platform Specific:

* i0S

« iPad portrait SplitView fix+animation, info popover resizing, stop button fix in Soundfile Pitch
Shifter.

e Csound-iOS API updates; Examples cleaned up, enhanced/expanded, and reordered. Manual re-
vised, expanded, updated. Updates to APl and examples support iOS 10 and X code 8.

« Android
e Multichannel input and output allowed.
* Windows

 csound64.lib import library added to Windows installer.

xliv

Preface

Release Notes for Csound 6.08 (2016 November)

Asusual there are anumber of opcode fixes and improvements, but the major changes are in the language
structures. First the score language has all-new treatment of macros and preprocessing, bringingitinline
with those of the orchestra. The parsing of the orchestra has had a number of fixes as outlined below.

A major, and not totally compatible change as been made in reading and writing array elements. The rate
of the index now often determines the time of processing; check the entry below under Orchestra. This
simplifies much code and seems to capture expectations; the earlier ad hoc code had many anomalies.

Also asusual there are anumber of new opcodes and internal fixesto memory leaks and more robust code.

» New opcodes:

L]

dct: Discrete Cosine Transform of a sample array (type-11 DCT).
getftargs: copy arguments of agen to an S-variable.

mfb: implements a mel-frequency filterbank for an array of input magnitudes.

* New Gen and Macros:

quadbezier: generating Bezier curvesin atable.

e Orchestra:

The character - is now correctly treated as a variant of ~ for bitwise not.
Lexing bug which could corrupt strings fixed.

Ensure no newlinesin string-lexing.

Small improvement in reported line numbers.

Better checking of macro syntax.

Improved parsing of setting of labels.

Added error handling for unmatched brackets for UDO arg specification.
Check that #included fileis not a directory.

Deeply nested macro calls better policed.

For years Csound has fixed the pitch of A4 at 440Hz. Now this can be set in the header using the new
r-variable A4, and also read with that variable.

Floating point values can use e or E for exponent.

Array access semantics have been clarified:

* i[i] = reading at i-time and perf-time, writing at i-time only.
* i[k] => reading at perf-time, writing yields aruntime error.

* K]i], k[K] => reading at perf-time, writing at perf-time.

« dli], ak] => reading at perf-time, writing at perf-time.

xlv

Preface

« other (9], f[]) => reading and writing according to index type (i,k).
In particular, i(k[i]) will continue not to work, as before, but the new operator i(k[],i) is provided to
cover this case.
 xout validation no longer fails when constants are given.
» Score:
< New codeto handle macros and other preprocessor commands. Bringsit into linewith orchestracode.
» New score opcode C introduced as away of switching automatic carry off (C 0) or on (default) (C 1).
» Options:
« Thetempo setting can now be a floating point value (previously fixed to integer).
* New option --version prints version information and exits.
» Modified Opcodes and Gens:
* Problemsin centroid fixed.
 Better treatment of rounding in printks.
» OSC extended to include multicast.
 Faust opcodes brought up to date with faust.
 o0scill and oscili can take a negative duration.
« fout opcode documentation clarified.
¢ Releasetimein mxadsr fixed.
 centroid opcode extended to take array inputsin addition.
* ptable opcodes are now identical to table family.
« ftgen now as array input option.
« subinstr can now have string arguments.

« thei() format is extended to work on k-rate arrays with the first argument being an array, followed
by the indices.

 Utilities:
 pvlook now aways prints explicit analysis window name.
* Frontends:
e HTML5
« csound.node: Implemented for Linux, minor AP fix.
 pnacl: Added compileCsdText method to csound object.

» Genera Usage:

xIvi

Preface

Checking of valid macro names improved.

#undef fixed.

Bugs Fixed:

Fixesto printsin format use.

jitter2 reworked to make it more like the manual.

oscbank has had multiple fixes and now works as advertised.

bformdecl with arrays and type 4 fixed.

Bug in pvsceps fixed.

In various formatted print opcodes extra trash characters might appear -- fixed.
Assigning variables with --sample-accurate could give unexpected results; thisis believed fixed now.
padsynth square profile fix, and opcode prints less depending on warn level.
gen31 fixed.

gendl fixed.

Bug in sensekey fixed.

A number of issuesin centroid fixed.

System changes:

New score lexing and preprocessor.

MAC line endings now work again.

System information messages (system sampling rate, etc) are now directed to stdout.
rtjack reworked to deal with names and numbers.

The version printing now includes the commit as so the developers know which patches have been
applied.

API:

API version now 4.0.

Now supports named gens.

fterror now in API.

API functions SetOutput and GetOutputFormat fixed.
Many API functions now use const where appropriate.

M essages can now be directed to stdout from the APl by using CSOUNDMSG STDOUT attribute.

xlvii

Preface

L]

New Lisp CFFI and FFI interfaces tested with Steel Bank Common Lisp (64 bit CPU architecture),
runs in separate thread.

ctcsound.py, a new FFI interface for Python was introduced in version 6.07. It is now the recom-
manded interface for Python, csnd6.py being deprecated.

 Platform Specific:

Android.
» Multichannel input and output allowed.
Windows.

 csound64.lib import library added to Windows installer.

Release Notes for Csound 6.07 (2016 March)

A large number of bug fixes, some quite major, someinternal are included, as well as some new facilities
and extensions. As ever there are coding improvements as well.

New opcodes:

compress2; like compress but using amore normal use of dB (0.0 for full scale).
(Experimental, source code-only) New cuda opcodes: cudasynth2 and cudanal 2.
directory opcode: reads a directory and outputs to astring array alist of file names.
ftsamplebank: to load a sample library from adirectory.

mvclpfl, mvelpf2, mvelpf3, mvclpf4, mvchpf: Moog voltage-controlled filter emulations from Fons
Andriaensen.

) converter from k-rate and i-time number to a string.
cepsinv opcode to calculate the inverse cepstrum of an array.
moogladder?2, is afaster, less accurate implementation of moogladder.

paulstretch opcode is a lightweight implementation of the Paul Stretch time-stretching algorithm by
Nasca Octavian Paul. It isideal for timestretching asignal by very large amounts.

mp3scal implements phase-locked vocoder processing from mp3-format disk files, resampling if nec-
essary.

filescal implements phase-locked vocoder processing from disk files, resampling if necessary.

Orchestra:

Theboolean ?.. : .. construction can now have string results, while previously it only allowed numbers.

The line number reported when an error is detected at the end of a line is now correct. Also more
improvements in line numbers for complex syntax.

while loop improved/fixed.

xIviii

Preface

 Better and consistent reading of comments.

« Continuation lines handled better, especially respecting line numbers.

» opcode: §.) syntax now allowed.

Score:

« Thelist of tempo pointsin score opcodet is now arbitrarily long.

e A stupidity in r and { opcodes fixed.

Options:

* The -z option now suppresses deprecated opcodes, unless given a2 or 3 argument.

* The new option --fftlib controls which real fft library to use internally (FFTLIB = 0, PFFFT =1,
vDSP =2)

Modified Opcodes and Gens:

e In OSC opcodesit is now possible to send and receive arrays, tables and audio.
* Better diagnostic if diskin2 fails.

» rezzy now checks for unstable filter and modifies to close stable version.
 adsr rewritten so it gives an error if the segments are longer than p3.

» Useof diskinto an array now resizes the output array if necessary.

« chnget now checks for a change in channel name as well as data.

* interp can take an optional extra argument to give an initial value.

« oscilikts uses amore liberal table lookup.

* opcode in can read mono or stereo, obviating the in/ins distinction.
 sensekey rewritten to provide better diagnostics and fixes aminor bug.
 Fix to acase of defining a macro with arguments.

* sockrecv now works at aand k rate.

« GEN49 now works from ftgen calls.

¢ GEN34 liberalised in tables it accepts.

 chnget now allows channel names to be changed at perf time.

* iceps has been renamed cepsinv to avoid name clashes.

« mp3 support improved in a number of minor ways.

< A minor fix to alow aladspa plugin to be re-loaded by the host.

Frontends:

xlix

Preface

csdebugger:
* Some memory issues fixed.
HTMLS5:

e CsoundQT has its own notes at https://github.com/CsoundQt/CsoundQt/blob/devel op/re-
lease_notes/Release%20Notes%200.9.2.1.md [https://github.com/CsoundQt/CsoundQt/blob/de-
velop/release_notes/Rel ease%620Notes¥%200.9.2.1.md].

General usage:

The multicore options somewhat improved.
When replacing instruments the new version inherits maxalloc and active flags.
Multicore code now works with midi instruments.

MIDI operations now available viaanew rtmidi jack module (-+rtmidi=jack).

Bugs fixed:

Fix to trigseq.

Major error in rezzy fixed.

p() fixed for high numbers of p-arguments.

p() now works from MIDI events.

The 31-bit random number generator could give avery short loop if seeded with zero; fixed.
Macrosin .orc files now work.

A long-standing bug in display of graphs fixed.

Fixes to the envelope opcodes linen, expsegr, linsegr, cossegr, transegr, envlpx, including new warn-
ings.

Many fixesin string opcodes (strsub, strcpy and others).

Fixed bugs in print formats (sprintf, printf, prints).

pvsmooth had a missing initialisation.

Array initialisation now robust.

Bug in copya2ftab fixed.

Fix in cudapvsanal (EXPERIMENTAL).

partikkel fix to subsample grain placement.

Opcodes that require an odd number of arguments are now properly checked.
pvswrite now takes proper notice of Odbfs.

GEN34 now allowing non-power-of-two source tables.

https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md

Preface

« vstdcs will now work on 64bit architecture.
* strcat mended.

* nstance mended.

« fixed small issuesin rtauha module.

« Windows installer for 64 bit CPU architecture now sets environment variables on system level as
it should.

* transeg at k-rate with itype non-zero had an initial delay if one cycle.
* log function on arrays fixed.
» Rescaling of named GENSs fixed.

» A fencepost error in reading ATSfiles believed fixed; it generated spurious errors about file finishing
early.

« Initiaisation error in pvbandp fixed.
« readfi string allocation fixed.
 System changes:

» Extensiveusemade of in-memory files. Orc and sco arealwaysthus, asare.csoundére. Thissimplifies
much internally.

» Nested longjmps fixed which affected some APl use.

 If anon-existent .csd fileis presented Csound no longer crashes.

» The kcounter value is now consistently an unsigned 64bit value, allowing for long performances.
* API:

» csoundCompileCsdText: New function to compile a CSD from a string of text.

» Thefunction call csound->GetK counter(csound) now returns an unsigned 64 hit integer. Previously
it returned along which is unclear.

« ctcsound.py isanew wrapper file to the Csound API for the Python language. It is a pure Python file
using the FFI (Foreign Function Interface) module ctypes. It does not depend on Swig, and it works
with Python2 and Python3 aswell. It uses numpy for itsdata structures, numpy being the fundamental
package for scientific computing with Python.

 Platform Specific:

e Windows.

» TheWindows installer for Csound now contains all executables built for 64 bit CPU architecture.
e The Windows installer for 64 bit CPU architecture now provides NW.js "out of the box." It runs

all features of Csound, aswell asall features of HTMLS5, in abrowser-like runtime with JavaScript
scripting, and includes a Csound editor implemented in HTML. The editor will run pieces ei-

Preface

L]

ther as .csd files with embedded <html> or as .html files calling the csound object, and includes
JavaScript debugging.

« A new simplified build system has been implemented in the csound/mingw64 directory for building
Csound using the MSY S2/mingw64 tool chain.

* Linking to pthreads and other libraries now static.

» Some limited support for non-ASCII charactersin file names.
OSX.

« Ingtaller fixed for link namesfor _csnd6 and _CsoundAC.
GNU/Linux.

« date opcode more accurate.

Release Notes for Csound 6.06 (2015 September)

A number of bug fixes, some quite major, are included, as well as some new facilities and extensions.

» New opcodes:

getseed reads the state of the PRN generator; opposite of seed opcode.
tabifd — Instantaneous Frequency Distribution, magnitude and phase analysis.
websocket — Read and write signals and arrays using a websocket connection.

framebuffer — Read audio signalsinto 1 dimensiona k-rate arrays and vice-versa with a specified
buffer size.

olabuffer — Sum overlapping frames of audio as k-rate arrays and read as an audio signal

e Orchestra:

Labels are allowed in instrument 0.

* Score:

Maximum string length in scores increased to 1024.

» Modified Opcodes and Gens.

diskin2 array version uses array size to give number of channelsin raw file form.
diskin2 now has the kpitch parameter defaulting to 1 for simple use.

Vibrato f-table in wgflute and wgcar optional, defaulting to sine wave.

schedule now accept string arguments.

urandom now available on OSX platforms.

GEN18 had fencepost problem; largely rewritten.

In poscil family of opcodesit is possible to skip initialisation of phase.

Preface

 svfilter now can skip initialisation.

* When opening an input file nchncls_i is used rather than nchnls. This is a change that should have
followed the existence of nchnls i

« rtjack module now reports the sampling rate.
» The opcodes rfft, rifft, fft, fftinv, r2c and c2r now havei-rate array versions.
* New optional threshhold parameter in opcodes tradsyn, sinsyn and resyn.
* New thresholding option for partials.
Utilities:
* extract fixed.
« src_conv improved and integrated with -U options.
* fixesin atsa, and heti.
Frontends:
e pnacl:
* Support for 48000 sample rate fixed.
* csound~:

 Changesto the threading system. String channel initialisation fixed. A number of other bugs were
fixed.

* Emscripten:
» Csound Javascript object can now receive data from the outvalue opcode.
 HTMLS:

* Integrate HTML, JavaScript, and other features of HTML5 with Csound, either by embedding a
Web page as an <html> element in the CSD file for CsoundQt or Csound for Android, or by hosting
Csound in the JavaScript context of a standalone Web browser (Emscripten, PNaCl) or embedded
Web browser (csound.node).

General usage:

« Ill-formatted macros in the orchestra now trapped.

Bugs fixed:

¢ Use of Windows-style environments for INCDIR etc now works with device numbers.
* vibrato opcode fixed.

 Clicking in real-time sample accurate case fixed.

e Copying of strings now correct; did confuse memory sometimes.

e Bug in pvstanal fixed.

Preface

» Rounding error in cpspch fixed.

* Removed crash on recompiling a named instrument.

Fix interpolation bug in tablexkt.

L]

Fix to plltrack when ksmpsis 1.
» System changes:
e The"error" message from STK plugin is now awarning.
o API:
« Redefinition of opcodes and UDOs fixed.
 Platform Specific:
e OSX.
» csnd6.jar link installed in the correct location.
« Java NI linking issues solved.

« fixed link name for libpng in libfltk_image.

Release Notes for Csound 6.05 (2015 April)

As ever there are new facilities and numerous bug-fixes. A major part of this release is the removal of
a number of memory leaks and over use of memory. Naturally these changes are all but invisible, just a
smaller memory foot-print. Note that we track bugs and requests for enhancements via the github issues
system, and these had a significant affect on this release.

» Opcodes:

» The opcode sndload is now deprecated.

New Gen and Macros:
 Paul Octavian Nasca's padsynth algorithm implemented as a gen.
» Score:
 Fixed string location cal cul ation bug when processing score lines [fixes #443]
e Options:
A short-format copyright option is available, with afixed number of well-known licences (CC, etc)
« New command-line option to report MIDI devicesin simple format

* New command-line option to set ksmps

Modified Opcodes and Gens:
« adsynt handles amplitude changes better

« sfont has better checking for corruptions

liv

Preface

« better checking in physical models for out-of-range frequencies

« ftgenonce and others allows string parameters

e gausstrig reworked and extended with new features

 useof p() function no longer complains overrides the pcnt warning

 fix to midirecv

e OSCsend cleans up after use improved

« fillarrayislimitedto 1 or 2 dimensional arrays; infact it failed silently previously for 3D and higher.
« oscbnk now works when the equaliser is used.

* mp3in now works with both mono and stereo input files

« flooper & flooper2 now allow stereo tables

» Release phase of expsegr fixed

« f-tables created by alarge number of arguments could overwrite memory, now fixed
« performance of plltrack improved

« init of arrays clarified and checked

e gen23 corrected to stop an infinite loop

 alwayson now startsfrom score offset; thisis part of afix to thelong-standing problem with alwayson
in CsoundV ST

« invalue now checks for output string size and reallocates memory if smaller than default string size
(set at 256 bytes for backwards compatibility)

Utilities:

» The srconv utility has been improved but it does not work well, with groups of noise in otherwise
good output. We recommend the use of Erik de Castro L opo's Secret Rabbit Code (akalibsamplerate)
as providing sample rate conversion at high quality. srconv will be removed shortly possibly to be
replaced by an SRC-based utility.

Frontends:
e pnacl
» Added interface to alow the use of Csound's MIDI input system.
* Fixed audio input to conform to the latest Pepper API spec.
Bugs fixed:
* bugsin fastabi,oscktp, phasorbnk, adsr, xadsr, hrtfer fixed.
 bugsin the harmon. harmon2, harmon3 and harmon4 fixed.

e Csound could crash after aparsing error, a case now removed.

Preface

e System changes:
» There are now checks that xin/xout types match those defined as part of UDO definition.
* jack now has atimeout.

* Internal Changes:

« Many defectsindicated by coverity fixed or code changed. Should make csound more robust in edge
Cases.

 Parser-related changes simplifies allocation of temporary variables, with some new optimisations.
« code for multi-thread rendering improved and stablised vis-a-vis redefinition of instruments.
 Platform Specific:
« i0S.
« Fixed audio callback to work correctly with lightning output and Apple TV.
* Android.

« New experimental audio 10 mode: csoundPerformKsmps() is called from the OpenSL ES output
callback. This mode can be optionally enabled by passing avalue of "false" to a new second para-
meter to the CsoundObj constructor (bool isAsync). The default constructor and the one-parameter
setsthisto "true" (keeping backwards compatibility with existing code).

e The OSC opcodes are included in distribution.

e Android app

e Therearenew file open and save dialogs that permit the user to accessthe SD card on the device,
if thereisone, in addition to internal storage.

e Thereisanew "Save as..." button that permits the user to save the csd as a new file with a new
name.

* Many of the examples in the archive of Android examples are now built into the app and can
be run from the app's menu.

* Includes now the exciter opcode.
* OSX.
* Installation now places csladspa.so rather than csladspa.dylib on disk.
 Linux.

e Linux is now build without FLTK threads. This removes system hangs and is in line with other
builds.

Release Notes for Csound 6.04 (2014 November)

This new version has many extensions and fixes; many new opcodes and significant numbers of internal
reworking. Thereis a new frontend and iOS qgf Android version have seen many improvements.

Preface

As ever we track bugs and requests for enhancements via the github issues system. Already proposals for
the next release are being made but the volume of changes require arelease now.

» New opcodes:
 pinker generates high quality pink noise.
» power opcode ™ now works with array arguments.
 exciter opcode, modelled on the calf plugin.
« vactrol opcode simulates an analog envelope follower.
« family of hdf5 opcodes to handle hdf5 format files.
 (experimental undocumented) buchla opcode models the lowgate filter of Buchla.
» New k-rate opcodes acting on arrays:
« transforms: rfft, rifft, fft, fftinv
« complex product; complxprod
 polar - rectangular conversion: rect2pol, pol 2rect, mags, phs
« real - complex: r2c, c2r
 windowing: window
* cepstrum: pVsCpes, iceps, ceps
 column/ row access: getrow, getcol, setrow, setcol
» aratedata- k-array copy: shiftin, shiftout
* phase unwraping: unwrap
* New Gen and Macros:
¢ Line numbers corrected in instr statements.
» New control operation, while, for looping.
A long-standing bug with macros which use the same name for an argument has been corrected.
» Redefinition of an instrument in asingle call to compileisflagged as an error.
» ID3 header skip for mp3 files now properly implemented.
 Errorsinduced by not defining the location of STK's raw wave files has been removed.
* bug fixed where UDO's could not read strings from pfields.
» Modified Opcodes and Gens:

» stackops opcodes deprecated.

Ivii
* lenarray extended to handle multi-dimensional arrays.

Preface

ftgenonce accepts string arguments correctly and multiple string arguments.

max and min now have initialisation-time versions.

gen23 improved regarding comments and reporting problems.

in OSCsend the port is now ak-rate value.

socksend now works at k-rate.

anumber of envelope-generating opcodes are now correct in sample-accurate mode.
faust compilation is now lock-protected.

mp3 fixed to allow reinit to be used with it.

In remote opcode the name of the network can be set via the environment variable CS NETWORK.
Defaults to en0 (OSX) or ethO.

Frontends:

icsound: New frontend icsound is now ready for general use. icsound is a python interface for inter-
active work in the ipython notebook.

csdebugger: A number of changes and improvements have been made, like stepping through active
instruments, better line number use.

General usage:

Jack module now does not stop Csound if autoconnect fails.

Bugs fixed:

atsinnoi fixed.
ftsavek fixed.
sprintf fixed.

gen27 fixed, especialy with extended arguments, as well as fixed a number of errors in extended
score arguments.

Physem opcodes (guiro cabasa, sekere) fixed so second call works.
flooper fixed in mode 2.

OSCsend multiple fixes.

UDO fix for case of local ksmps of 1.

More changes/fixesto dssi code.

xscanu and scanu fixed.

temposcal and mincer fixed.

crash in ftload fixed. Iviii

Preface

e System changes:

In server mode exit is now clean.

Fixes to rtalsamodule.

Pulseaudio rt module fixes.

Fix to remove fluidEngine entries for csound instance (prevents crash on moduleDestroy).

Opcodes called through function calls that returned arrays did not correctly synthesize args as array
types due to not converting the arg specifier to the internal format.

fixed crashing issue during note initialization for tied notes due to goto skipping over code.

fixed incorrect initialization of pfields when note's pfields length were |ess than instrument expected
(off-by-one).

* Internal Changes:

Added Runtime Type Identification for instrument variables; removed use of XINCODE/XOUTCO.
fix malloc length in negative number parsing, and improved handling of negative numbers.

writing to circularBuffer is now atomic.

anumber of memory leaks and potential dangerous code have been fixed.

type-inference has been extensively reworked, as have afew parsing areas.

* APl

Added API function for retrieving GEN parameters used for creating atable.

* Platform Specific:

iOS.

» API Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundVaueCacheable).

» Updated to remove deprecated code.
A significant amount of reworking has been done on the code.
Android.

» API Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundVaueCacheable).

» Changesto enable HTML 5 with JavaScript and it is to be hoped WebGL in the Csound6 Android
app.

» Enabled change of screen orientation in the Csound6 app without forcing a restart of the app.

» Enabled local storage (useful for saving and restoring widget values, etc.).

Windows. -
lix

Preface

« fixed pointer arithmetic that caused crashing on Windows.

 pyexec changed to use python's file opening functions to prevent crash on Windows.
* OSX.

e CsoundAC now compiles.
 Linux.

« threadlocks bug fix on linux.

Release Notes for Csound 6.03 (2014 May)

This new version has a large number of bug fixes (including clearing many tickets on SourceForge and
GitHub) aswell internal changes to improve performance.

» New opcodes:

e prinks2
: prints anew value every time a control variable changes using a printf() style syntax

« mp3sr, mp3bitrate, and mp3nchnls to get information on mp3 files

« EXPERIMENTAL: CUDA opcodesfor partitioned convolution direct convolution and sliding phase
vocoding; OpenCL opcode for additive synthesis

e compilecd
to compile instruments from a standard CSD file

* Orchestra:

e Theargument for i() is supposed to be a variable not an expression. Thisis now enforced. (bug #90)
» Score:

* New score opcode y sets the random seed (for ~) at read time
* Options:

» Therewas abug in CsOptions; the last argument was missed being read(issue #296)

« As command-line options expression-opt and no-expression-opt do nothing in Csound6 a warning
is printed

» Modified Opcodes and Gens:
» For ogg output it is possible to specify aVBR (variable block rate) quality.
* dssi4cs code has been extensively reworked to avoid potential memory faults.

* Many array operations now available for i-arrays as well as k-arrays.

L]

fillarray will work for string arrays

» Displaysof FFT (viadispfft) improved with scaling/zooming options

Ix

Preface

 Signal flow graph opcodes are now working with a-rate array signals.

* InasaRT code the sample rate is taken from the device

 Faust opcode system updated to latest faust API

Utilities:

« fixed bug in Ipanal

csound-~:

e OSX - fix for running with 32-bit cpu architecture

* Windows - csound~ now available for Windows

Emscripten:

» Thisisnow generally merged into the code-base

General usage:

 --displays now switches graphs on, as expected

» New commandline option --get-system-sr added to obtain the machine's sample rate
* New command-line option --deviceg[=in|out] gives alist of available audio devices and then exit
Bug fixes:

« fixed the bug when tables were replaced but the size did not change

« A number of bugs in --sample-accurate have been detected and fixed. This includes opcodes out,
outn, and line

e A number of bugsin grain3 were fixed

e Buginstr_chanel could cause a crash; fixed

« Small bug in rtjack fixed

« Error in resize opcode corrected

» Fixed an unlikely bug in atsa

 Fixed rtauhal pause issue

* A number of bugs/untidiness fixed in GEN23

 Array bound checks fixed

* strings channels were not correctly set for dynamic-size strings, now fixed
» memory allocation for string formatting in printfsk was fixed, stopping string truncation
* strcat safe against overflow

« error in compilation of arrays fixed (issue #293)

IXi

Preface

» GetPvsChannel fixed against a crash
» System Changes:
« turnoff opcode now checks that the instrument being affected is active
* lenarray can accept any array type
« theway of rounding atable number to an integer was changed and is now more as expected

« thereisanew possiblesectioninacsdfilecalled <CsFile...>whichislike csFileB but with unencoded
text.

* UDO compilation now uses the type system. This means that UDOs now alow any array type to
be used

« Improved orchestra parsing speeds with better algorithms
* Internal Changes:

» The whole system has been checked by the Coverity static checker which identified a number of
(mainly minor) problems. These have been reviewed and checked. In particular better use of printing
and string copying should prevent overflows

< Thetypeand variable system has been extensively rewritten; thisallows better array and UDO support
« Alignment of variables got right in all cases

« Array copying is now using the type system to copy values; fixes issues with copying string arrays,
f-sigs, etc

« Always reset Csound when stopping to ensure state is clean; was not being reset when there was a
compile error, so that next successful run would start with an invalid Csound engine (issue #305)

* AP

« All opcodes etc now use the APl memory all ocation operations, so it is possible to replace the whole
memory allocator

« Added csoundCompileCsd to API and associated new compilecsd opcode
* Protected csoundGetStringChannel against null and short strings and added a check for string size

« A number of API functions have had char* changed to const char* which reflect the usage

The performance engine now includes debugging capabilities to allow interrupting rendering and pro-
viding introspection into the engine's state and instrument variables. The following new functions are
available by including the csdebug.h header:

voi d csoundDebuggerlnit (CSOUND *csound);

voi d csoundDebugger C ean (CSOUND *csound);

voi d csoundSet | nstrunent Breakpoi nt (CSOUND *csound, MYFLT instr, int skip);

voi d csoundRenovel nstrunent Breakpoi nt (CSOUND *csound, MYFLT instr);

voi d csoundd ear Br eakpoi nts (CSOUND *csound);

voi d csoundSet Breakpoi nt Cal | back (CSOUND *csound, breakpoint_cb_t bkpt_cb, void *userdata);
voi d csoundDebugConti nue (CSOUND *csound);

voi d csoundDebugSt op (CSOUND *csound) ;

debug_instr_t *csoundDebugGet I nstrlnstances(CSOUND *csound);

voi d csoundDebugFreel nstrl nstances(CSOUND *csound, debug_instr_t *instr);

Ixii

Preface

debug_vari abl e_t *csoundDebugGCet Vari abl es(CSOUND *csound, debug_instr_t *instr);
voi d csoundDebugFr eeVari abl es(CSOUND *csound, debug_variable_t *varHead);

* Windows:

« Soundfonts in Windows had an internal alignement problem which is fixed

Release Notes for Csound 6.02

This new version has alarge number of bug fixes (including clearing all general tickets on SourceForge).
It also introduces some major new facilities such as use as a server, code to run Csound in a browser and
alarge generalisation of filter opcodes to have parameters changeable at audio rate.
» New opcodes:

 nstance opcode schedules a new instrument instance, storing the instance handle.

* turnoff nw variant to stop a given instrument instance.

o strfromurl to set astring from a URL.
* Orchestra:

« If building supportsit, a#include string can be aURL or afile.

» A spaceisagain permitted between afunction name and the opening bracket for all functionsallowed
in Csound5 (but not in general).

» The Csound command can start with an empty CSD in daemon mode (--daemon): do not exit if CSD/
orchestrais not given, is empty or does not compile).

» Score:
« If building supportsit, a#include string can be aURL or afile.
» Modified Opcodes and Gens.

* Many filters generalised to allow k- or a-rate parameters. In particular it includes these:

areson atonex
butterworth filters fofilter
lowres lowresx
Ipf18 mode
moogladder moogvcf
reson resonr
resonx resonz
statevar tonex

¢ The maximum number of presetsin sfont increased to 16384.

e cpsmidinn is now more accurate.

Preface

The vst4cs opcodes have been re-factored. FLTK code has been encapsulated. The build system has
been updated for Csound 6.

In alwayson opcode changes for better handling of pfields, more reliable insert of an instrument
instance for repeating or re-started score sections.

Thesignal flow graph opcodes have replaced OpenM P multi-threading with pthreads, using one-time
initialization of static structures.

Frontends:

PNaCl is now supported as a platform, allowing Csound to run under the Chrome browser in all
enabled operating systems.

Bugs fixed:

adsynt2 opcode fixed.

ftgentmp opcode fixed.

dates opcode fixed.

fixed abug in pvsfilter.

fixed stereo out in temposcal and mincer.
pan2 opcode fixed.

index overflow in randh and randi fixed.

A number of fixes to CsoundV ST: initialization, score handling, and MIDI driver initialization, so
it now works for Csound 6.

fixed pycalln for no inputs.
fixed/revised setting and use of ksmps and kr in UDOs.
fixed problem in sending a score event from max to csound via csound~ (Ticket #58).

If itype in chn_k was set to 3 and values are set less than 1, Csound6 used to give an INIT Error.
(Ticket #67).

A number of reported seg faults have been dealt with.
xtratim opcode was using incorrect ekr value from csound instead of from instance; when used in

conjunction with setksmps, was causing notes to have very long xtratim set and thus notes were
effectively not getting turned off

System changes:

A server mode is now available, accepting input via UDP (with --port option).
A longstanding bug in extract was detected and fixed. It does suggest that this facility is little used!

The way the external score generator was coded is substantially changed. In particular this should
fix avery strange bug in Windows.

Ixiv

Preface

« Fixed crashing bug with invalue channel callback due to wrong data object being pulled from csound
host data.

 Fixed bug in UDOs with no local ksmps where kcounter was being used incorrectly.
 Better checking in channels.

o (Experimental) If the environment variable CS_UDO_DIR is set then any files in the directory that
have an .udo extension are automatically included at the start of the orchestra. This facility needs
review to seeif it iswhat isrequired.

» (Experimental) Thereare new cuda GPGPU opcodes (source only): cudasynth (3 versionsfor additive
synthesis, additive synthesis of fsigs and phase vocoder resynthesis) and cudanal (a GPGPU version
of pvsanal).

* Internal changes:

« Many attempts at faster code.

» Typeinference and parsing still improving.
+ i0S:

* Fixed crash where no csoundSetHostlmplementedMIDIIO is used on iOS and no _RTMIDI value
iSset.

e OSX:

 Fixed input device name for auhal.

Release Notes for Csound6

Csound6 is a significant rewrite of much of the code. In particular the APl is not compatible, although all
orc/sco/csd works should still run.

There are new facilities, like sample accuracy and realtime mode, described below.

IMPORTANT: The environment variable to find plugins are called or
(note the 6) so it can co-exist with Csound5.

Similarly is renamed

Arrays are now mainstream, with syntax and opcode support. They also exist in multidimensional format.
They are created (usually) with init opcode or fillarray.

Ki[] init 4

generates ak-rate 1-D array of length 4. Similarly

a2[][] init 4, 4

creates a square 4x4 a-rate array.

k2[] fillarray 1, 2, 3, 4

creates a 4-element vector filled with 1,..4, which also defines the length.

Ixv

Preface

Elements are used viaindexing in [] such as k1[2] or a2[2][3]. One dimensional arrays replace tvars, and
can be used in opcodes like maxtab, mintab and sumtab (see below). Array setting can be done in |eft-
hand side of opcodes, i.e.

aSigs[0] vco2 .1, 440
aSigs[1] vco2 .1, 880

The new realtime priority mode can be switched on with by passing the --redtime or setting the
CSOUND_PARAMSfield realtime_mode to 1. This has the following effects:

1. all opcode audio file reading/writing is handled asynchronously by a separate thread.
2. al init-pass operations are a so performed asynchronously.

Multicore support is totally rewritten using a different algorithm for task-dispatch, which should use less
memory and fewer locks.

» New opcodes:
 faustgen
 array -- many new or revised opcodes -- see Array Opcodes.

» compileorc takes a filename containing a collection of instrument definitions and compiles them,
replacing existing versions. It returns O on success.

» compilestr islike compileorc but takes a string.

* readscore runs the score preprocessor on a string and then schedules new events via the RT event
mechanism, returning O if successful.

e Orchestra

« Note events can start and end in mid-kcycle. As this is an incompatible change it is only invoked
when the command-line option --sample-accurate is specified. Note that this does not work for tied
notes, and use of skipping initialisation has questionable use.

 Instruments can run at local ksmps values using set ksnps i ksnps asin Csound 5 UDOs.

» Compilation can be done at any stage, new instruments are added or replace old ones. Running in-
stances of old instrument definitions are not affected. Only limitation is that header constantsin in-
str O are read only once at the time of the first compilation. Init-time code can be placed outside
instruments in the global space, and this will be executed once-only following the compilation. In
this case, score event generation can be completely replaced by orchestra code. See also new opcodes
compileorc and compilestr.

* New syntax operators +=, -=, *= and /=. These are more than syntactic sugar; please use += and -=
for accumulating reverbs as it gives better multicore behaviour.

« The opcodes add, sub, mul and div have been deleted; use the forms + - * /. Not many people were
aware of these opcodes.

< Any opcode with a single output or with no outputs can be used as a function. Some opcodes might
require type annotation to resolve ambiguities, more details on the Function syntax in Csound 6.

A statement can be broken across lines after a, = or arithmetic operation.

Ixvi

Preface

» There are arange of new or recoded operations on k-valued arrays, most restricted to 1 dimensional

arrays (vectors):
kans m narray ktab returns the snallest value in the
(possi bly) nultidimensional array
kans maxarray ktab is like mntab
kabs sunmarray ktab returns sumof all values in the array
ktab genarray imn, imax[, inc]

generates vector of values fromimn

to imax by increments of inc (default 1)
kt ab2 maparray ktabl, "sin" maps the k-rate l-arg function in

the string to every elenment of the vector
kt ab2 maparray_i ktabl, "sin" nmaps the i-rate 1-arg function

inthe string to every elenent of the vector
ktab2 slicearray ktabl, istart, iend

returns a slice of ktabl fromktabl[istart]

to ktabl[iend]
copyf2array ktab, kfn copies data froman ftable to a vector
copya2ftab ktab, kfn copies data froma vector to an ftable

Arithmetic on arrays is allowed. In particular addition, subtraction, multiplication, division on aele-
ment-by-element version is provided in arithmetic format. Similar operations between an array and
ascalar are allowed.

« Each instance of any instrument has a scratchpad of 4 values that persist; allows values to carry to
next use of the instrument; hope it may be useful in legato etc.

« |If atable number is given as -1 then an internal sine wave equivalenttof. 0 16382 10 1 isused.
Attempts to write to this table will give unpredictable results, but is not policed. The 16382 can be
change by command line option --sine-size=# where the # is rounded up to a power of two.

« A number of oscil opcodes now have the f-table parameter as optional, defaulting to the internal sine
wave. (oscill, oscil1i, oscil, oscil3, oscili, foscil, foscil1, loscil, loscil 3).

» Score:

 Score lines can have multiple strings.

» Change to escape charactersin score strings -- they do not happen.

 Also note the readscore opcode.
» Modified Opcodes and Gens.

» Thek() function can take an a-rate argument in which caseit isacall to downsamp.
* Utilities

» Hetro/adsyn analysis files can be machine byte-order independent if created with -X. Down sideisa
longer file and alittle lower loading. The het_export utility will create the independent format from
the old, and het_import is no longer necessary.

» cvanal and Ipanal will produce machine independent files if -X option is used. The convolve and
Ipread etc opcodes will accept either format. Y ou are encouraged to use the machine independent
form. Analysisfiles produced with -X can be used on other systems.

* Frontends

» Bugsfixed:

Ixvii

Preface

System Changes:

* InLinux and OSX the treatment of localesis now thread-safe and local.
Platform Changes:

API:

New API functions...

* new configuration/parameter setting functions

PUBLI C i nt csoundSet Opti on(CSCUND *csound, char *option);

PUBLI C voi d csoundSet Par ans(CSOUND *csound, CSOUND_PARAMS *p);

PUBLI C voi d csoundGet Par ans(CSOUND *csound, CSOUND_PARAMS *p);

PUBLI C voi d csoundSet Qut put (CSOUND *csound, char *name, char *type,
char *fornat);

PUBLI C voi d csoundSet | nput (CSOCUND *csound, char *nane);

PUBLI C voi d csoundSet M DI | nput (CSOUND *csound, char *nane);

PUBLI C voi d csoundSet M DI Fi | el nput (CSOUND *csound, char *nane);

PUBLI C voi d csoundSet M DI Qut put (CSOUND *csound, char *nane);

PUBLI C voi d csoundSet M DI Fi | eQut put (CSOUND *csound, char *nane);

* new parsing/compilation functions

PUBLI C TREE *csoundPar seOr c(CSOUND *csound, char *str);

PUBLI C i nt csoundConpi | eTr ee(CSOUND *csound, TREE *root);
PUBLI C i nt csoundConpi | eOr c(CSOUND *csound, const char *str);
PUBLI C i nt csoundReadScor e(CSOUND *csound, char *str);

PUBLI C i nt csoundConpi | eArgs(CSOUND *, int argc, char **argv);

» new function for starting csound after first compilation

PUBLI C i nt csoundStart(CSOUND *csound);

« new software bus threadsafe getters/setters

PUBLI C MYFLT csoundGet Cont r ol Channel (CSOUND *csound, const char *nane);

PUBLI C voi d csoundSet Cont r ol Channel (CSOUND *csound, const char *name, MYFLT val);
PUBLI C voi d csoundGet Audi oChannel (CSCUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet Audi oChannel (CSCUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet Stri ngChannel (CSOUND *csound, const char *name, char *string);
PUBLI C voi d csoundCet Stri ngChannel (CSOUND *csound, const char *name, char *string);

* new table threadsafe copy functions

PUBLI C voi d csoundTabl eCopyCQut (CSOUND *csound, int table, MYFLT *dest);
PUBLI C voi d csoundTabl eCopyl n(CSOUND *csound, int table, MFLT *src);

API has been made threadsafe so that performance and control can occur in separate threads (after acall
to csoundStart() or csoundCompile()). Threadsafety is ensure by

1. use of atomic read/writing to control channels
2. spinlocksin audio and string channels
3. mutexes protecting compilation, score events and table access.

Internal:

Ixviii

Preface

e The build system is now cmake (and not scons as in Csound5).

< A number of table access opcodes have been rewritten but should behave the same. Similarly diskin
and diskin2 now use the same code and so diskin should be more stable.

e Theold parser is completely removed.

New internal functionsin Csound

void (*FlushGCircul arBuffer)(CSOUND *, void *);
void *(*Fil eOpenAsync) (CSCQUND *, void *, int, const char *, void *,
const char *, int, int, int);
unsi gned int (*ReadAsync)(CSOUND *, void *, MYFLT *, int);
unsigned int (*WiteAsync)(CSOUND *, void *, MYFLT *, int);
int (*FSeekAsync)(CSOUND *, void *, int, int);
char *(*CGetString) (CSOUND *, MYFLT);
Extract a string originating froma score-event argunent.

Functions removed

void *(*FileQOpen) (CSOUND *, void*, int, const char*, void*, const char*);

The "private" parts of the APl have been changed considerably. Also structures like EVTBLK have
changed.

The LINKAGEL/FLINKAGE1 macros arerenamed as LINKAGE_BUILTIN/FLINKAGE_BUILTIN.

Template for a-rate perf-pass opcodes is

int perf_nyopcode(CSOUND *csound, MYOPCODE *p)

{
uint32_t offset p- >h. i nsdshead- >ksnps_of f set ;
uint32_t early p- >h. i nsdshead- >ksnps_no_end;
uint32_t nsnps = CS_KSMPS;

if (UNLI KELY(offset)) menset(p->res, '\0', offset*sizeof (MYFLT));
if (UNLIKELY(early)) {
nsnps -= early;
menset (&p->res[nsnps], '\0', early*sizeof (MYFLT));
}
for (n=offset; n<nsnps; n++) {

p->res[n] =

return CX;

}

String variables re-implemented

OENTRY structure has changed and has a new dependency field; please use thisfield asit is required
for multicore semantics. You could set it to -1 and disallow all parallelism, but at least it is safe.

All opcodes that touch audio should take note of sample-accurate code.

A number of previous API functionsare removed; OpenFile and OpenFile2 both replaced by new Open-
File2 with additional argument.

Additions have been made for arg type specifications for opcodes.

¢ Any-types have been added, as follows:

Ixix

Preface

 '!'signifiesarequired arg of any-type
« '? signifiesan optional arg of any-type
o "*'gignifiesavar-arg list of any-type

» Arraysare now specified using "[x]" where x is atype-specifier. The type-specifier can be any of the
of the current specifiers, including any-types. See Opcodes/arrays.c for example usage.

* New Type System
A new type system has been added to Csound6, and significant changes have been madeto the compiler.
The previous system for handling typesinvolved depending on thefirst-letter of avariable'sname every
timeit was used to determine type. This meant there was alot of re-checking of types. Also, adding new
typeswasdifficult, astherewasalot of custom code that had to be updated to check for new typeletters.
In Csound6, a separate system of types was added. Types are defined as CS_TYPE's. The creation of
variablesfrom typesand theinitialisation of memory hasbeen encapsulated withinthe CS_TY PE's. This

change allows easier addition of new types, as well as generic calculations of memory pools, amongst
other things.

The compiler has been modified since Csound5 to now use the type system as an integral part of its
semantic checking phase. Variables are now registered into aCS VAR _POOL when they are first de-
fined, with the CS_VARIABLE having areference to its CS_TY PE. After first time definition within
the pool, the typeinformation isthen looked up in consequent variabl e lookups, rather than re-cal culated
from the variable name. This opens up possibilities for new variable naming and typing strategies, i.e.
using "myVar:K" to denote ak-rate arg. This also opens up possihilities for user-defined types, such as
"data myType kval, aval", then using "myVar:myType" to define a var of that type. (The previousis
speculative, and is not an active proposal at thistime.)

The addition of the type system has formalised the static type system that has existed in Csound prior to

Csoundé. It has, arguably, simplified the code-base in terms of type handling, aswell aslaid the ground
work for future type-related research to be integrated into Csound.

New in Version 5.19 (2013 January 7)

Thisismainly abug-fixing release but with a number of new opcodes and enhanced features.
» New opcodes:
 ipmidi module for MIDI over network.
 ppltrack opcode.
« combinv opcode.
* New Gen and Macros:
« Better checking in GEN28.
« Check range in outrg, and optionally allow wrapping.
* Orchestra:

e Change empty statement to awarning.

Ixx

Preface

Added line numbers to many input args message (new parser).

Modified Opcodes and GENSs:

Better error and warning messages.

loopseg now checks argument count.

harmon2/3/4 improved.

active: added the option to skip the instances in release phase.

New and more tested implementation of ChordSpace.

Bug fixed:

Fix botched optimisation in lowpass filters.

Chn opcodes fixed in Linux.

Fix bug in loscil with silence.

Correct GEN23 when comment does not end in newline.
Correcting loopseg.

Number of input and output channels fixed in new parser.
Fixed GEN43 issue.

Fixed fout.

centroid was likely to crash.

Minor bug in printing which lost %.

Anuninitialised value in fold fixed.

Uninitalised values in dconv fixed.

Assignment of fsigs now works.

System Changes:

Avoid seg fault on some user errors.

Faster modal4 opcodes.

Allow cabbage compilation.

Made pfield size dynamic in event message csoundapi~.
The default output format with pipe and double float is AU.

Change to ircam with default format, '-o stdout' and pipe.

Added double float precision for output! fatimat.

Preface

 Platform Changes:
e Linux:
« Spinlocksinitialised (fixes bug in chn opcodes).
* OSX:
 Improved selection of devicesin rtauhal module.
« Added acircular buffer interface and lock-free operation to rtauhal.
» Fixed MacOSX installer (creating symlinksto lib_csnd.dylib).
e Haiku:
* New platform
* Android:
« Using -B now in android to set circular buffer size.
« Added fluid synth opcodes for android.
» Added inputMessage method to CsoundOb;.
« Allow CSDPlayer to be installed on SD Card.
« i0S:
 Improved audio routing.
 Bottom speaker the default for iOS.
* API:

» Added new API function csoundCompileFromSrings().

New in Version 5.18 (2012 August 29)

Thisismainly abug-fixing release but with a number of new opcodes and enhanced features.
» New opcodes:

« centroid opcode like pvscent but acting on audio signals

 cosseg like linseg but with cosine interpolation

 cossegb like linsegb but with cosine interpolation

 cossegr like linsegr but with cosine interpolation

joystick to read input values from an external joystick (Linux only)

log2 function for logarithms base 2

Ixxii
 platerev opcode to model areverberating square plate

Preface

L]

pwd opcode to determine the current working directory

readf opcode to read strings from afile

readfi opcode to read strings from afile on initialisation

vbap opcode like other vbap family but flexible about number of speakers and choice of layouts.

vbapg opcode like vbap but only calculate the gains on the channels.

* New functionality

L]

Changes to <CsOptions> to allow spaces between words, and escaped characters.

fout and fin use a better buffering strategy, and so are faster

It is possibleto specify just an orchestrawith the --orc flag. Thisis useful when a score is not needed.
A new command-line flag --ogg flag has been added for easy use of ogg/vorbis outpuit.

Added alsaseq real-time midi

* Bug fixes and improvements:

dates opcode could crash on 64bit architecture; thisis fixed

Some mullticore interlocks were wrong. It is believed that this was not actually a problem, but would
be in the future.

There were cases when afile was double closed, leading to a crash on exit.

Two new features added in partikkel. Panning law for channelmasks can now be set using afunction
table (second optional argument to partikkel) and new support opcodes partikkelget and partikkel set,
to access and modify the internal mask indices of partikkel.

follow2 was reworked do the i-rate and k-rate cal cul ations are the same.
pvscent is corrected asit returned half the correct value.

vbaplsinit can create more than one speaker layout which vbap/vbapg can use. Also much better
diagnostics on incorrect layouts.

* Internal Changes:

L]

Code changed so bison 2.6 can be used.
It is assumed that libsndfile version 1.0.19 or later is available.

If the score is omitted a near-infinite wait is generated.

New in Version 5.17 (March 2012)

Thisis mainly a bug-fixing release with no major changes, but the number of fixes warrants arelease.

» New opcodes:

cell opcode, for cellular automata

Ixxiii

Preface

» Modified Opcodes and Gens.

active now will report total number of active or allocated instrumentsif argument in zero
stsend and strecv the TCP socket opcodes reworked to alogical design
DSSI system now will take up to 9 channels

FL savesnap works with other widgets where imin > imax

o Utilities:

csbeats better documented and built by default; also more note lengths available

Some security holesin utilities fixed

* Bug fixes:

L]

unirand opcode at a-rate fixed
Localefix for floating point literalsin orchestra

transegr fixed

e System Changes:

Score can now last longer (change to size of time variable)
An empty score gives avery long performance time (years and years)
Android code released

Changes to use of tmp files; now al are deleted at end of run (previously some were left) and the
environment variable TMPDIR is used.

interaction between Comments, end of line and end of file fixed

Hexadecimal numbers now allowed in orchestra

Empty orchestra now not a crash

change to macro expansion inside a string

avoid infinite loop when eof in malformed score macro

fixed macroname-with-args diagnostics and memory leak

change to preprocessor: {{ }} inside"..." and better diagnostics

fix windows installer so it removes full $INSTDIR\bin from PATH during uninstall: this cleans up
the PATH environment variable when uninstalling on Windows. Previously, it was leaving atrailing
"\bin" on the PATH.

CsoundAC MusicModel class more usable by C++ programs

ftcps had been missed as a function

* Internal Changes: Ixxiv

Preface

Many! Some messages quietened, code improvements etc

New in Version 5.16 (February 2012)

The major change is that the new parser is now the default. The old parser is till available in case of
difficulty but the new has been given extensive testing since the start of the year, including complete
restructuring of macro expansion. A side effect is that the runtime of most orchestras is faster, although
parsing is slower. There are a few optimisations implemented like constant folding in simple cases. Line
numbers and file names are traced better than before.

Some memory leaks also fixed.

» New opcodes:

L]

Opcodes adapted from SuperCollider by Tito Latini: dust, dust2, gausstrig, gendy, gendyc, and
gendyx.

Fractal noise generator by Tito Latini: fractalnoise.
Opcodes for accessing table values by direct indexing, by John ffitch: ptable, ptablei, ptable3, and

ptablew. These opcodes are respectively like table, tablei, table3, and tablew, but they do not require
apower-of-2 table size.

» Modified Opcodes and Gens:

There was a fence post problem in tab opcode that could falsely report a reference out of range.

GEN15 mis-called gens 13 and 14 internally, using uninitialised values voice amplitude. Problem
fixed.

fmbell now takes an optional argument to control the sustain time.
Change to pvshasic for tab to table conversions.

poscil is now polymorphic, allowing k- or a-rate amplitude and frequency.
p() and i() changed when argument at k-rate.

gend9 deferred now works.

gen23 now available deferred.

* Utilities:

Checked for use with the new parser in memory files.

* Frontends:

Table access added to csoundapi~ via new get/set methods.

* Bug fixes and improvements:

Many in new parser related to precedence and multicore.

Better diagnostics when orchestrafile/csd is missing.

IXxv

Preface

csd file: fix CsFileB and CsSampleB.

Fixed score statement 'n'.

Fixed bug in diskin2 leading to infinite loop.
Fixed bug causing crossfade noise in hrtfmove.
Fixed unlikely buffer overflowsin some utilities.
Avoid segfault in midicN.

Bug in mp3in in skip=0 case fixed.

'r' score statement fixed with respect to macros.

sndwarp could segfault.

System Changes:

Preprocessor #if #else #endin working.
#includes depth now limited rather than infinite recursion.

Really turn off all displaysif --nodisplaysor -d is used; fixesbug where using -d or --nodisplayswould
still cause the winFLTK.c csoundM odul el nit to setup display callbacks; bug caused with python TK
apps and CsoundYield FLTK being called.

Memory leak in mp3in and mp3len fixed.

Internal Changes:

Very, very, very many! And the new parser...

New in Version 5.15 (December 2011)

New opcodes:

ftab2tab opcode.

tab2pvs opcode.

pvs2tab opcode.

cpumeter opcode, (not really new but now available in OSX)
minmax opcode.

(EXPERIMENTAL) ftresize opcode.

(EXPERIMENTAL) ftresizei opcode.

hrtfearly opcode.

hrtfreverb opcode.

New Gen and Macros

IXxvi

Preface

» Codeto allow GEN49 to be deferred [NB does not seem to work]

Modified Opcodes and Gens

« socksend and sockrecv no longer uses MTFU check and work on Windows
» mpulse changed so if next event is at negative time use the absolute value

« seria opcode now runs on Windows as will as Un*x

* out, out2, outg, outh, outo outx and out32 are now identical opcodes and will take up to as many
arguments as nchnls. This replaces the current remapping of opcodes

* turnoff2 now polymorphic wrt S and k types (ie accepts instrumnet names)
Bugs fixed:

e GENA42 fixed

* jacko: fixed a segfault removing the unused JackSessionl D option

« doppler memory leak fixed

« transegr fixed in release mode when skipping most of envelope

* FLPack now agrees with manual

* max_k now agrees with manual

* hrtfreverb fixed

* atsa code now works on Windows in more cases

« tabmorph bug fixed

« fixed problem with user-defined opcodes having no outputs

* Variousfixesto* ... */ comments

System Changes:

 Various licence issues sorted

« Lorisisno longer part of the Csound tree

e Memory leaks fixed

« If no scoreis given adummy that runs for over 100 yearsis created
* All score processing takes place in memory without temporary files
« String memory now expandable and no size limitation

o #if #else #end now in new parser

¢ Adjustmentsto MIDI file precision in output

¢ On OSX move from Coreaudio to AUHAL

Ixxvii

Preface

Multicore now safe for ZAK, Channels and modifying tables
New coremidi module

Virtual Keyboard improved: 1) Dropdown for choosing base octave (the one that starts with the
virtual key mapped to physical key Z). Default valueis 5 which is backwards compatible. 2) Shift-X
mappings which add two octaves to X mappings for atotal of 4 octaves playable from the physical
keyboard (starting from sel ected base octave). 3) Control-N / Control-Shift-N mappingsto increment /
decrement slider for control N. 4) Mouse wheel how controls sliders.

tsig type for vectors
tsigs and fsigs allowed as argumentsin UDOs

API: Minor version upped

Internal Changes:

L]

Very, very, very many!

New in Version 5.14 (October 2011)

New opcodes:

mp3len opcode.
gnan opcode.
ginf opcode.
exprandi opcode.
cauchyi opcode.
gaussi opcode.
cpumeter opcode.
linsegb opcode.
expsegh opcode.
transegb opcode.
expsegha opcode.
pvsgain opcode.
pvsbufread? opcode.
serial opcodes.

lua opcodes opcodes.

Ixxviii

Preface

« plustab opcode.

« multtab opcode.

e maxarray opcode.

e minarray opcode.

e sumarray opcode.

« scalearray opcode.

New functionality

* beats processor renamed to csbeats and distributed

« mkdb utility to provide a catalogue of plugin libraries/opcodes

« ladspalibrary build in default system

* macros are now expanded inside string in the score

 thereinanuntil .. do .. od looping syntax (in the new parser only)

» SIGPIPE signals are ignored rather than causing Csound to exit

 Itis possible to use vectors of k-rate values, named t-variable. They are initialised to a fixed sizw
with init adncan be read with asimple[] syntax. assignment to elementsisonly via=. Thereare also
afew new opcodes that provide wider functionality.

Bug fixes and improvements:;

« reading values to fill tables was broken with respect to comments

* internal error in wii_data fixed

 pvsshift fixed

* jacko fixed

» gen23 minor fixes

» wiimote fixed

* atsaadd fixed

» compress fixed to work with Odbfs

 pvsbufread corrected with respect to position counting

 tempo opcode fixed

e CsFileB section in .csd files had a bug, now fixed

« deferred genO1 tables could have wrong size

» vbap_zak made to work(!) Ixxix

Preface

« fixed memory issuein ATSsinoi
* various fixesto cscore
 variousfixesto partials and tradsyn
* transegr could crash in some cases
« loris opcodes updated to latest version
« date opcode has new base in some platformsto avoid overflow
 pvsblur now works over reinit
« diskin, diskin2 and soundin now can read up to 40 channels
* prints behaves better with rounding
« fmpercfl now has working vibrato
* atreson now has gain parameter at k-rate
< comb opcode made safe if in and out arguments the same
« better accuracy in line and expon
¢ OSCsend recovers space previoudly lost
* OSCsend can send atable as ablob with the T tag -- experimental and untested.
* |pf18 now has an optional iskip argument
« i() will also accept an i-rate value in which caseit isano-op
» makecsd revised and extended to have options for MIDI and score processing and licenses
* |panal reworked to remove bugs and oddities
e anissuewith noisein alsafixed and a click in portaudio fixed
 portaudio driver changed to be more robust on stop/exit
* Internal Changes:
* Many many changesto the new parser so it is now operational, but should be used with care

e The multicore system is distributed in an experimental mode and should be used with great care.

L]

New in Version 5.13 (January 2011)

» New opcodes:

» median opcode.

IXxX

Preface

filevalid opcode.
pvstanal, pvswarp, temposcal, pvslock spectral processing opcodes.
mincer opcode

fareylen sequence opcodes.

New functionality

Real random number generators using /dev/random (Linux only).
INF macro added to orchestras; z read as infinity in scores

init changed to allow multipleinitsin on statement

GEN for support of farey sequences

maxalloc,cpuprc, active now accept named instruments.

If normalisation in pow opcodesis zero treat as 1

inch can take upto 20 inputs and outputs.

pvscale, pvsvoc and pvsmix now have very good spectral envel ope preservation modes (1 = filtered
cepstrum, 2 = true envel ope).

oscil1 could be stetic if the duration was long; now there is a positive minimum increment.

GENA49 now uses search paths.

Bug fixes and improvements:

Count of linesfixed in orchestras, and \ inside strings
Fast tab opcodes made safe from crashes

% in formated printing could crash

Double freein fgen fixed

sndwarp quietened (gave too many messages)
gendl deals with positive probabilities
adsynt reworked removing many bugs
adsynt2 phase error fixed

Bug in max number of gens fixed

Better checking in graind

Better checking in adsyn

modulus was wrong in new parser

atonex/tonex did wrong operation

IXXXi

Preface

» mp3in could repeat sound at end of file

« changed opcode initialised to zero

 Serious bug in tabmorpha fixed

* GENA49 has serious bug removed, so no longer incorrect silences.

« partikkel opcode: fixed bug in sub-sample grain placement when using grain rate FM
* Internal Changes:

¢ Inthe new parser only there are operator @ and @@ to round up the next integer to a power of 2
or powerof2+1

 Score sorting made much faster

* lineto improved

* Named gens allowed

» Various printing include instrument name if available

« Command option to omit loading alibrary

« Number of out channels no longer constrained to be number of in

¢ Many fixesto new parser

« More use of Warnings than Messages (allows for them to be switched off)

¢ csoundSetM essageCallback reset if callback set to null

New in Version 5.12 (January 2010)

» New opcodes:

* transegr isaversion of the transeg opcode which has a release section which is triggered by midi, a
turnoff2 opcode or a negative instrument number i score event.

« ftgenonce generates afunction table from within an instrument definition, without duplication of data.
* passign allows quick initialization of i-rate variables from p-fields
 crossfmimplements crossed fm synthesis.
 loopxseg islike loopseg but with exponential envelope.
* looptseg is like loopseg but with a flexible envelope like transeg
» Bug fixes and improvements:;
 pvshift would overwrite in double mode.
e pan2 case 3 fixed.

« clockon and clockoff now work again.

IXxxii

Preface

 cross2 and interp could have divided by zero

linecount for error messages no longer includes text from .csoundrc
 p5gconnect changed to use a separate thread to avoid timeout problem.

* transeg checks argument count.

sfload used to be limited to 10 sound fonts and was not policed. Now open-ended.
* Internal Changes:

» \" alowed as an escape in orchestral strings

» New parser fixed on optional arguments

 Better checking of f statement with negative number

Soundfonts only initialise pitches array once, in the soundfont opcodes.

Usual collection of gratuitous minor changes, layout and comments

New in Version 5.11 (June 2009)

» New opcodes:
» mp3in alows reading of mp3 files directly in the orchestra.

 wiiconnect, wiidata, wiisend, wiirange opcodes by john ffitch to receive and send data to a wiimote
controller.

« New opcodes to receive data directly from a p5glove by john ffitch pSgdata

* tabsum sums sections of ftables

e MixerSetLevel i aninit-time only version of Mixer SetLevel

 doppler implements a simulation of the doppler effect.

« filebit reports the file depth of afile.

« The new Sgnal Flow opcodes enable the usage of signal flow graphsin Csound.
* New functionality

« New panning type for pan2 opcode

* New csd score tag <CsExScore>.

* New -Maoption for ALSA RT MIDI module which listens to all devices.

* Thereisagen49 to read mp3 files

¢ Added rounding bin code to pvscale

* Added non-power-of-2 table support fg,ffliead and ftsave

Preface

GENZ23 totally rewritten to be more consistent in what constitutes a separator and comments. (Still
no /* */ comments)

» Bug fixes and improvements:

L]

New examplesfor pvs opcodes by Joachim Heintz: pvsarp, pvscent, pvsbandp, pvsbandr, pvsbufread,
pvsadsyn, pvsynth, pvsblur, pvscale, pvscross, pvsfilter, pvsfreeze, pvshift, pvsmaska, pvsmorph

Use of automatic numbering of ftables reuses table numbers
seed with positive argument was wrong

sprintf with an empty string printed wrong data

mute now works with both numeric and named instruments

Small fixesin diskin, and in tablexkt

* Internal Changes:

SConstruct now builds completely independent shared libraries for Python, Lua, and Java wrappers.
New Parser aimost usable

Redrawing of graphs fixed so that only selected ones get redrawn.

RT-alsamore forgiving on near sample rates

It is possible to have the score generated by an external program rather than using standard score
format using <CScore bin="translater"> to call the program trandlater on the score data

Ipc_export fixed
Removed limit on macro names length

PMAX, the number of arguments to a score event has been reduced by 2, and an overflow system
introduced so GENs can have arbitrary numbers of arguments.

Increased APl versionto 2.1.

New API function pointer [dmemfile2withCB() which isaversion of I[dmemfile() allowing acallback
to be set and called exactly once to process the MEMFIL buffer after it isloaded.

csound->floatsize set; zero in earlier versions

GetChannel Lock added

New in Version 5.10 (December 2008)

» New functionality

New option to listen to al MIDI devices using the portmidi realtime module. To enable listening to
all devicesuse "-+rtmidi=portmidi -Ma".

Dither on output implemented; rectangular and triangular dither available in some cases

GENZ20 type 6 now has option to set variance

Ixxxiv

Preface

» Bug fixes and improvements:;

Locale set to C numeric to avoid , versus. problems.
diskin fixed

outo was broken regarding channel 6

pitchamdf fixed

Zilter2 intialization fixed

s32b14 fixed

Fixed other bugs fixed that have not been reported publicly.

* Internal Changes:

The major version of the Csound APl is increased to 2; affected csound.so as well. This means that
Csound 5.10 is incompatible with applications ("front ends", "clients", or "hosts") that were built
for Csound 5.08 and earlier and that use API version 1.x. These applications will need to be rebuilt
to work with the current and future versions of Csound. Csound front ends written in interpreted
languages such as Python or Javamay continue to work without modification. It may also be possible
to keep both an earlier version of the Csound library and an API 2.0 version on the same machine
together so that new and old Csound-based applications can run side-by-side. These changesdo notin
any way affect the compatibility of Csound orchestras and scores: all old documents should continue
to work as before.

Time now counted internally in samples, overcoming a longstanding bug with rounding of time to
k-rate.

Many internal changes related to branch prediction. Some opcodes are substantially quicker.

New in Version 5.09 (October 2008)

» New opcodes:

New vosim opcode by Rasmus Ekman which recreates the historic VOSIM (VOca SIMulator) tech-
nique.

New dcblock2 opcode by Victor Lazzarini.
New Chua's oscillator model: chuap by Michael Gogins.

New Linear Algebra opcodes by Michael Gogins. Standard Linear algebra over real and complex
vectors and matrices. elementwise arithmetic, norms, transpose and conjugate, inner products, matrix
inverse, LU decomposition, QR decomposition, and QR-based eigenvalue decomposition. Includes
copying vectors to and from a-rate signals, function tables, and f-signals.

New ambisonic opcodes: bformdecl and bformencl. These opcodes deprecate the older bformdec
and bformenc.

New Score control opcodes by Victor Lazzarini: rewindscore and setscorepos.

* New functionality:

IXxxV

Preface

The vbap family of opcodes (vbap4, vbap8, vbapl16 and vbapz) now accept k-rate variables for all
their input arguments.

New pulseaudio 1/0O module on Linux.

New optional ienv parameter to generate envel opesfor the soundfont opcodes: sfplay, sfplay3, sfplaym
and sfplay3m.

Added 'skip normalisation argument' to “tanh" named GEN routine. (See Named GEN Routines)

Added scheduler priority option on alsa.

* Bug fixes and improvements:

Allow scientific notation (as was in csound4!) in GEN23.

Fixed bug in FLTK initialization. Should make FLTK usage more stable.
Error on /* */ comments in orchestra fixed.

poscil no longer overwrites frequency if variable is shared.

printk and printks check that opcode isinitialised.

Deprecate soundout and soundouts in favour of fout.

Fixed space opcode to accept non-pow-2 (deferred) tables.

Fixed pvsmorph bug.

* Internal Changes:

New parser has #include and argumentless macros.

L ess casting between floats and doublesin float version.
Includes experimental multicore support.

buzz opcode rewritten.

Many other internal changes and small bug fixes.

New in Version 5.08 (February 2008)

» New opcodes:

imagecreate, imagesize, imagegetpixel, imagesetpixel, imagesave, imageload and imagefree: New
image file processing opcodes by Cesare Marilungo to read/write png images from Csound.

pvsbandp and pvsbandr by John ffitch, which perform band-pass and band-reject filtering in the
spectral domain on apvssignal.

New HRTF opcodes by Brian Carty:hrtfmove, hrtfmove2 and hrtfstat.

New waveshaping opcodes. powershape, polynomial, chebyshevpoly, pdclip, pdhalf, pdhalfy, and

amepnhacor
SYyHCpPHasOt

IXxxvi

Preface

New jack transport control opcode: jacktransport

* New functionality

Added --csd-line-nums= command line option to select mode for error line reporting.

New "no-carry" operator (!) for score language that preventsimplicit carrying of p-fieldsin i-state-
ments.

Added --syntax-check-only commandline flag (exclusive with --i-only)

<Cslicence> tag for CSDs. <CslLicense> is accepted as an aternative to <CsLicence>.

» Bug fixes and improvements:

Changed order of outputs for hilbert. This change breaks compatibility with previous versions, but
fixes the opcode and now works as documented.

M essages about |oading opcode plugins modified so can be suppressed with message level flag.

Major changesto score error reporting; now accurately reportsthe line numbersfor the chain of inputs
for most errors.

Corrected pan2 so it agrees with documentation.
<CsVersion> tag works again according to the manual.

Fixed the{ and } score looping statements. Added missing documentation for them and ~, &, |, and
operators in score expressions.

hilbert had its outputs reversed, now correct. Manual example updated.

* Internal Changes:

Change to gettext localisation; French and Columbian-Spanish translations available.

Internal changesto partikkel, interpolation of waveform read and windowing, allowing more precise
pitch synchronous granular synthesis. Updated examples for partikkel.

pvscale: Improved algorithm for SDFT case so no ampltitude variation.

New in Version 5.07 (October 2007)

» New opcodes:

pan2: a stereo panning opcode

cpsmidinn, pchmidinn, octmidinn: converters for MIDI note numbers
fluidSetinterpMethod: interpolation in fluid sound fonts

sflooper: a soundfont version of flooper2

pvsbuffer and pvsbufread: buffering/reading of fsigs for delays/timescale changes.

* New functionality

IXxxvii

Preface

» SDFT - the Sliding Discrete Fourier Transform -- added seamlesdly to pvsanal, etc opcodes if the
overlap is less than the ksmps or less than 10. Some pvsX XX opcodes extended to take a-rate para-
meters when dliding.

« New feature (-O null / --logfile=null) that disables all messages and printing to the console.
Bug fixes and improvements:

 partikkel -- particle synthesis had an inadvertent bug, now fixed.

 Closing of MIDI input on Windows(MM) failed; now fixed

« fluidEngine opcode now takes optional number of channels (range 16-256, default to 256) and
polyphony (range 16-4096, default to 4096) to use.

« atsa utility safer when given silence.

¢ ATSaddnz improved checking.

« Ambisonics (bformdec, bformenc) has more options for controlled opposites.

¢ Bug in turnoff2 fixed.

* het_export: invalid check caused export to fail.

Internal Changes:

e Improved Windows installer.

¢ CsoundV ST replaced by CsoundAC, that does not depend on the VST SDK headers.
* Less messagesin Windows(MM) startup.

e Pargument type added (k-rate defaultsto 1) for opcodein and out types.

New in Version 5.06 (June 2007)

New granular opcodes: partikkel, partikkelsync and diskgrain.
New opcode for event dispatch: scoreline.

Many new opcodes from Gabriel Madonado's CsoundAV: hvsl, hvs2, hvs3, vphaseseg, inrg, outrg,
Iposcila, Iposcilsa, Iposcilsa2, tabmor ph, tabmor pha, tabmor phi, tabmor phak, trandom, vtablelk, dlid-
er8table, dider16table, slider32table, slider64table, slider8tablef, slider16tablef, slider32tablef, slid-
er64tablef, sliderKawai and the a-rate version of ctrl7.

Also from CsoundAV, many new FLTK widget opcodes. FLkeyln, FLdidBnk2, FLvdidBnk, FLvs-
lidBnk2, FLmouse, FLxyin, FLhvsBox, FLslidBnkSet, FLslidBnkSetk, FLslidBnk2Set, FLdlidBnk2Setk,
FLdidBnkGetHandle,

New pvs opcodes:. pvsdiskin, pvsmorph,
eqfil
New command line options (--m-warnings)to control messages

csladspa: a CSD to LADSPA plugin kit.

Ixxxviii

Preface

« And many bug fixesincluding (but not limited to): fixed k-rate version of system; fixed scaling problems
of vrandh and vrandi; fixed ocasional failure of turnoff; fixed OS X bug; fixed ATScross and fixed mod.

Csound5GUI now works properly on al platforms and csoundapi~ (pd object) has been updated.

[XxXix

Part |. Overview

Table of Contents

gL oo (1 1o o 4
The CSOUNA COMMEBNG ...ttt e e et e et et e e et et e e e e et e e e e ana s 5
Order Of PrECEOEBNCEvui ettt e e e e e e e s 5
Description of the COMMENd SYNEEXccoeuuueiiiiieiiii e 5
CsouNd COMMANG TN ...ttt e et e eeeaa s 7
Command-line Flags (DY CalEJONY)uieirrrnieeiii ettt e e e e et e eeees 17
Csound Environment VariableSuiiiiiiiie e 28
Unified File Format for Orchestras and SCOMeSc..uuviiiiiiiiiiiiiii e 31
DESCIIBLION ...ttt ettt e e et e 31

EXBIMPIE ..t e 33

Command Line Parameter File (.CSOUNICT)uiiiiiiiiiiiii e 34
SCOME File PrEPrOCESSING .. .ceevtuetiiii ettt ettt ettt ettt ettt e e e eeere s 34

The EXIraCt FEALUIE ...t et e e 34
Independent Pre-Processing With SCSOMc.uuuiiiiiiiiieiiiiie e 35

USING CSOUNG ...ttt ettt ettt e ettt e ettt e e e e e et e e et e bt e e e eebbneeeenaaeeeee 36
CSOUNA'S CONSOIE OUELPULeeeetiee ettt ettt ettt e et e e e et e e e e et e e e enbaaaeeees 36

HOW CSOUND WOTKS ...ttt ettt e e et e et e e et e e e naa s 37
Amplitude ValuES iN CSOUNGcoevuuiiiiiiieeeit e 38

REAI-TIME AUTIO ..o et e e et e e e een s 40
REBITIME 1/O ON LINUX ...ttt e e e 40

VLB OSX ittt e et 46
WINAOWS ..ot e et e et e e et e e et e e et e e et e e e et e e eaneeenns 47
Realtime 1/0 with JACK Connection Kitcoouuiiiiiiiiiiiiiiieeei e 48
Optimizing AUAIO [/O LELENCYeevveeiiiiii ettt 49
1600]01 1T U111 oo IO PP PPTTRPPPPTINN 51
Syntax Of the OFChESIIA i e e 52
Orchestra Header SEAIEMENTScouueieiiii et 52
Instrument and Opcode BIOCK SEAEMENLSccuuuiiiiiiieiiiii e 53
OrdiNary SEALEIMENTSeeieeteeeeit et e ettt e et e e ettt e e et e e e et e e e e et e e e eabaes 54
Types, Constants and Variablesccouuiiiiiiiii e 54
Variable INITaliZaHIONcooeueiiei e 55
EXIIESSIONS ...ttt et 55
DireCtories @nd FIlESuuiiiiii et 56
NOMENCIBEUNE ..ttt ettt e et e e et e e e e e e e e e 56
= o (0L PP TPPRN 57
NBMED INSIIUMENES ...ttt e e e et e et e et eeeeaa s 57

User Defined OpcodeS (UDQ)ccuuuueiiiiiieieei ettt ettt e e e 60
KRG VBCIOIS ...ttt et e e e e e e e et e ea e anns 60
FUNCtion Syntax iN CSOUNGccoeuuuiiiiii et 60

The Standard NUMEIIC SCOIEc.uuuiieiiii et et e e e ea s 62
Preprocessing Of Standard SCOTESccouuuiiiiiiiie e 62

L0 4 TP UPT T PPTRPPTPPN 62

TBIMPIO ettt 63

S0 PP UP PP SPPPTTRUPPPN 63

SCOME SEAIEIMENTS ...ttt ettt e e e e et e e e e e ren e een e 64
Next-P and Previous-P SYMDOIS ... 64

e 011011 oo R PSP POPPTTR 65
o0 = |V - ol (oS PP PP PPTPN 66
MUITIPIE FIlE SCOME ...ttt 68
Evaluation Of EXPrESSIONScciiitieiiiii et 68
SINGS TN P-FIEIAS .o e 70

Overview

L 00 =100 PP 71
(=0 U 0o N TP 72
(LS00 0o LY TP 74

L T0TH o [T T K o 11 oo N 76

(LS00 o I 01PN 77

Introduction

Csound isaunit generator-based, user-programmable computer music system. It was originally written by
Barry Vercoe at the Massachusetts I nstitute of Technology in 1984 as the first C language version of this
type of software. Since then Csound has received numerous contributions from researchers, programmers,
and musicians from around the world.

Around 1991, John ffitch ported Csound to Microsoft DOS. Csound currently runs on many varieties of
UNIX and Linux, Microsoft DOS and Windows, all versions of the Macintosh operating system including
Mac OS X, and others.

There are newer computer music systems that have graphical patch editors (e.g. Max/MSP, PD, jMax,
or Open Sound World), or that use more advanced techniques of software engineering (e.g. Nyquist or
SuperCollider). Yet Csound still has the largest and most varied set of unit generators, is the best docu-
mented, runs on the most platforms, and is the easiest to extend. It is possible to compile Csound using
double-precision arithmetic throughout for superior sound quality. In short, Csound must be considered
one of the most powerful musical instruments ever created.

In addition to this "canonica" version of Csound and CsoundAC, there are other versions of Csound and
other front ends for Csound, many of which can be found at http://csound.github.io.

http://csound.github.io

The Csound Command

The command csound is a basic frontend to the system that can be used to generate a sound output from
an orchestra file and a score file (or aunified csd file). It is designed to be called from atermina or DOS
window. In addition to it, there are other front-ends, which might be simpler to use. The score file can
be in one of many different formats, according to user preference. Tranglation, sorting, and formatting
into orchestra-readable numeric text is handled by various preprocessors; all or part of the score is then
sent on to the orchestra. Orchestra performance is influenced by command flags, which set the level of
displays and console reports, specify 1/0 filenames and sample formats, and declare the nature of real-time
sensing and control.

Order of Precedence

There are five places where options for Csound performance may be set. They are processed in the fol-
lowing order:

1. Csound's own defaults

2. File defined by the CSOUNDRC environment variable, or .csoundrc file in the HOME directory
3. A .csoundrc filein the current directory

4. <CsOptions>tagin a.csd file

5. Passed on the Csound command line

Thelater optionsinthelist will override any earlier ones. Asof version 5.01 of Csound, sample and control
rate overrideflags (-r and -k) specified anywhere override sr, kr, and ksmps defined in the orchestraheader.

Description of the command syntax

The csound command is followed by a set of Command Line Flags and the name of the orchestra (.orc)
and score (.sco) files or the Unified csd file (containing both orchestra and score) to process. Command
Line Flags to control input and output configuration may appear anywhere in the command line, either
separately or bundled together. A flag taking a Name or Number will find it in that argument, or in the
immediately subsequent one. The following are thus equivalent commands:

csound -nnB8 orchnane -Sxxfil ename scorenane
csound -n -m 3 orchnane -x xfilenane -S scorenane

All flags and names are optional. The default values are:

csound -s -otest -bl024 -B1024 -n¥ -P128 orchnanme scorenane

where orchnameisafile containing Csound orchestracode, and scorenameisafileof scoredatain standard
numeric scoreformat, optionally presorted and time-warped. If scorenameis omitted, there aretwo default
options:

1. if real-timeinput is expected (e.g. -L, -M, -iadc or -F), a dummy score file is substituted consisting of
the single statement 'f 0 3600 (i.e. listen for RT input for one hour)

2. else Csound uses the previously processed score.srt in the current directory.

The Csound Command

Csound reports on the various stages of score and orchestra processing as it executes, performing various
syntax and error checks along the way. Once the actual performance has begun, any error messages will
derive from either the instrument loader or the unit generators themselves. A CSound command may
include any rational combination of flag arguments.

Running the examples in this manual from the command
line

Most of the manual's examples come ready to run without the need of adding any command line flags
since they specify options within the csd file's <CsOptions> tag, so you only need to type something like:

csound oscil.csd

within the examples folder, and realtime audio output should be generated.

The Csound Command

Csound command line

csound

Description

The csound command executes Csound.

Syntax

csound [flags] [orchnane] [scorenane]

csound [flags] [csdfilenane]

Csound command line flags

Listed below are the command line flags available in Csound6 in alphabetical order. Various platform
implementations may not react the same way to different flags! Y ou can view the command line flags
organized by category in Command-line Flags (by Category).

The command line arguments are of 2 types: flags arguments (beginningwitha“-",*--" or “-+"), and name

arguments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags
that start with “--" and “-+" usually take an argument themselves using “=".

Command-line Flags

-@FILE Provide an extended command-linein file“FILE”

-3, --format=24bit Use 24-bit audio samples.

-8, --format=uchar Use 8-hit unsigned character audio samples.

--format=type Set the audio file output format to one of the formats available in

libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, MPC, nist, ogg, paf, pvf, raw, sd2, sds, svx, voc, w64,
W64, wav, wavex, WVE, xi. Can also be used as--format=type:for-
mat or --format=format:typeto set both thefiletype (wav, aiff, etc.)
and sample format (short, long, float, etc.) at the same time.

-A, --aff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -1, or -f flags.

-a, --format=alaw Use a-law audio samples.

-B NUM, --hardwarebufsamp- Number of audio sample-frames held in the DAC hardware buffer.
s=NUM This is a threshold on which software audio I/O (above) will wait

before returning. A small number reduces audio 1/0 delay; but the
valueisoften hardwarelimited, and small valueswill risk datalates.
In the case of portaudio output (the default real-time output), the -
B parameter (more precisely, -B / &) is passed as the "suggested
latency" value. Other than that, Csound has no control over how

The Csound Command

-b NUM, --iobufsamps=NUM

-C, --cscore
-c, --format=schar

--csd-line-nums=NUM

-D, --defer-genl

-d, --nodisplays

-d

--devices

--deviceg[=X]

--displays
--default-paths

PortAudio interprets the parameter. The default is 1024 on Linux,
4096 on Mac OS X and 16384 on Windows.

Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio 1/0O delay and im-
prove the accuracy of the timing of real time events. The default
is256 on Linux, 1024 on MacOS X, and 4096 on Windows. In re-
a-time performance, Csound waits on audio 1/0 on NUM bound-
aries. It also processes audio (and polls for other input like MIDI)
on orchestraksmps boundaries. The two can be made synchronous.
For convenience, if NUM isnegative, the effective valueisksmps*
-NUM (audio synchronous with k-period boundaries). With NUM
small (e.g. 1) polling isthen frequent and also locked to fixed DAC
sample boundaries.

Note: if both -iadc and -odac are used at the same time (full duplex
real time audio), the -b option should be set to an integer multiple
of ksmps.

Use Cscore processing of the scorefile.
Use 8-bit signed character audio samples.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file (.csd).
Thisflag hasno effect if separate orchestraand scorefilesare used.
(Csound 5.08 and later).

* 0 =line numbers are relative to the beginning of the orchestraor
score sections of the CSD

¢ 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

Defer GENOL soundfile loads until performance time.

Suppress all displays. See -O if you want to save the log to afile.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.

Givesalist of available audio devices and then exits.

list audio devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

Enables displays, reverting the effect of any previous-d flag.

Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

The Csound Command

--env:NAME=VALUE Set environment variable NAME to VALUE. Note: not al environ-
ment variables can be set this way, because some are read before
parsing the command line. INCDIR, SADIR, SFDIR, and SSDIR
are known to work.

--env:NAME+=VALUE Append VALUE to ;' separated list of search pathsin environment
variable NAME (should be INCDIR, SADIR, SFDIR, or SSDIR).
If afileisfound in multiple directories, the last will be used.

--expression-opt Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. Thismeansthat for examplethislineal = a2 + a3 will com-
pileasal Add a2, a3 instead of #a0 Add a2, a3 al = #a0 saving a
temporary variable and an opcode call. Less opcode calls result
in reduced CPU usage (an average orchestra may compile about
10% faster with --expression-opt, but it depends largely on how
many expressions are used, what the control rateis (see also be-
low), etc.; thus, the difference may be less, but also much more).

e number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of |ess temporary variables are:

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control
rate (e.g. ksmps = 100)

« large orchestras may load faster due to less different identifier
names

« index overflow errors (i.e. when messages like this Case2: in-
dx=-56004 (ffff253c); (short)indx = 9532 (253c) are printed
and odd behavior or a Csound crash occurs) may be fixed, be-
cause such errors are triggered by too many different (espe-
ciadly arate) variable namesin asingle instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

9

The Csound Command

-F FILE, --midifile=FILE

-f, --format=float

-G, --postscriptdisplay
-g, --asciidisplay

--get-system-sr

-H#, --heartbeat=NUM

-h, --noheader

--help

-1, --i-only

-i FILE, --input=FILE

Warning
When --expression-opt isturned on, it is not allowed

to use the i() function with an expression argument,
and relying onthevaue of k-rate expressionsat i-time
isunsafe.

Read MIDI events from MIDI file FILE. The file should have on-
ly one track in Csound versions 4.xx and earlier; this limitation is
removed in Csound 5.00.

Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displaysinstead.

printssystem sr and exits, requires previous-o dac. |f the audio does
not support this request then -1 is reported.

Print a heartbeat after each soundfile buffer write:
¢ no NUM, arotating bar.

* NUM =1, arotating bar.

NUM =2, adot (.)
* NUM = 3, filesize in seconds.
* NUM =4, sound a bell.

No header on output soundfile. Don't write afile header, just binary
samples.

Display on-line help message.

i-time only. Allocate and initialize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides afast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

Input soundfile name. If not afull pathname, the file will be sought
first in the current directory, then in that given by the environment
variable SDIR (if defined), then by SFDIR. The name stdin will
cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer valuein the range 0 to 1023, or a device name separated
by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the host
audio interface whether adevice number or aname should be used.
In the first case, an out of range number usualy resultsin an error
and listing the valid device numbers.

10

The Csound Command

The audio coming in using -i can be received using opcodes like
inch.

-+id_artist=string (max. length = 200 characters) Artist tag in output soundfile (no
spaces)

-+id_comment=string (max. length = 200 characters) Comment tag in output soundfile
(no spaces)

-+id_copyright=string (max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

-+id_scopyright=integer (Since version 6.05) Simple copyright/licence encoded as an inte-
ger. Coding is:

0: "All rights reserved" (default)

1. "Creative Commons Attribution-NonCommercial-NoDeriva-
tives (CC BY-NC-ND)"

2: "Creative Commons Attribution-NonCommercial-ShareAlike
(CCBY-NC-SA)"

3: "Creative Commons Attribution-NonCommercial (CCBY-NC)"
4: "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

5: "Creative Commons Attribution-ShareAlike (CC BY-SA)"
6: " Creative Commons Attribution-ShareAlike (CC BY)"
7: "Licenced under BSD"

-+id_date=string
(max. length = 200 characters) Date tag in output soundfile (no
spaces)

-+id_software=string (max. length = 200 characters) Software tag in output soundfile (no
spaces)

-+id_title=string (max. length = 200 characters) Title tag in output soundfile (no
spaces)

-+ignore_csopts=integer If set to 1, Csound will ignore all options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

-+input_stream=string Pulseaudio input stream name.

-J, --ircam, --format=ircam Write an IRCAM format soundfile.

-i NUM Make NUM processes available for rendering. Thisis only advan-
tageous if the number of processors on the computer is the same
or more that the number of requested processes. It also may slow
rendering down if ksmpsistoo small.

-+jack_client=[client_name] The client name used by Csound, defaults to 'csounds'. If multiple

instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac OS
X only)

11

The Csound Command

-+jack_inportname=[input port
name prefix], -+jack_outport-
name=[output port name prefix]

-K, --nopeaks
-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

-1, --format=long

-M DEVICE, --midi-device=DE-
VICE

-m NUM, --messagelevel=NUM

Name prefix of Csound JACK input/output ports; the default is'in-
put' and ‘output’. The actual port name is the channel number ap-
pended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these ports in full duplex operation:

csound5: i nput 1 (record left)
csound5: i nput 2 (record right)
csound5: out put 1 (pl ayback left)
csound5: out put 2 (pl ayback right)

Do not generate any PEAK chunks.
Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your termi-
nal, or piped from another process. Each line-event is terminated
by acarriage-return. Events are coded just like those in a standard
numeric score, except that an event with p2=0 will be performed
immediately, and an event with p2=T will be performed T seconds
after arrival. Events can arrive at any time, and in any order. The
score carry featureislegal here, asare held notes (p3 negative) and
string arguments, but ramps and pp or np references are not.

Note

The-L flagisonly valid on*NIX systemswhich have
pipes. It doesn't work on Windows.

Use long integer audio samples.

Read MIDI events from device DEVICE. If using ALSA MIDI
(-+rtmidi=alsa), devices are selected by name and not number.
So, you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid de-
vice numbers are printed.When using PortMidi, you can use '-Ma
to enable all devices. Thisis also convenient when you don't have
devicesasit will not generate an error.

Message level for standard (terminal) output. Takes the sum of any
of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 =warning messages

128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0=raw amplitudes, no colours

12

The Csound Command

* 32=dB, nocolors

* 64 =dB, out of range highlighted with red

96 = dB, al colors
» 256 = raw, out of range highlighted with red

e 512 =raw, al colours

The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perfor-
mance. The coloring of raw amplitudes was introduced in version
5.04.

--m-amps=NUM Message level for amplitudes on standard (terminal) output.
< 0= no note amplitude messages
¢ 1= note amplitude messages

--m-range=NUM Messagelevel for out of range messages on standard (terminal) out-
put.

* 0= no samples out of range message
¢ 1=samples out of range message
--m-warnings=NUM Message level for warnings on standard (terminal) output.
« 0= no warning messages
« 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
« 0 = absolute amplitude messages
¢ 1=dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
* 0=no colouring of amplitude messages
e 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
¢ 1= print benchnark numbers

-+max_str_len=integer (min: 10, max: 10000) Maximum length of string variables + 1;
defaults to 256 allowing a length of 255 characters. The length of
string constantsis not limited by this parameter.

--midi-devices[=X] list midi devices (x=out, output devicesonly; x=in, input; elseinput
and output) and exit.

13

The Csound Command

--midi-key=N Route MIDI note on message key number to pfield N asMIDI value
[0-127].

--midi-key-cps=N Route MIDI note on message key number to pfield N as cycles per
second.

--midi-key-oct=N Route MIDI note on message key number to pfield N as linear oc-
tave.

--midi-key-pch=N Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

--midi-velocity=N Route MIDI note on message velocity number to pfield N as MIDI
value [0-127].

--midi-velocity-amp=N Route MIDI note on message velocity number to pfield N as am-
plitude [0-OdbFS].

--midioutfile=FILENAME Save MIDI output to afile (Csound 5.00 and later only).

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled

on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-+mute_tracks=string (max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

-N, --notify Notify (ring the bell) when score or MIDI track is done.
-n, --nosound No sound. Do all processing, but bypass writing of sound to disk.

This flag does not change the execution in any other way.

--num-threads=NUM Make NUM processes available for rendering. Thisis only advan-
tageousif the number of processors on the computer ismorethat the
number of requested processes. It also may slow rendering down if
ksmpsistoo small.

--no-default-paths Disables adding of directory of CSD/ORC/SCO to search paths.
--No-expression-opt Disables expression optimization.
-O FILE, --logfile=FILE Logoutput tofileFILE. If FILEisnull (i.e.-O null or --logfile=null)
al printing of messages to the console is disabled.
Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

-0 FILE, --output=FILE Output soundfile name. If not afull pathname, the soundfilewill be
placed inthedirectory given by the environment variable SFDIR (if
defined), elsein the current directory. The name stdout will cause
audio to bewritten to standard output, while null resultsin no sound
output similarly to the -n flag. If no nameisgiven, the default name
will be test.

14

The Csound Command

--099
--omacro:XXX=YYY
--opcode-lib=LIBNAME

--0rc orchame

--ksmps=N
-+output_stream=string

--port=N

-QDEVICE

-R, --rewrite

-r NUM, --sample-rate=NUM

-+raw_controller_mode=boolean

--reatime

The name devaudio or dac (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It ispossible to
select a device number by appending an integer value in the range
0to 1023, or adevice name separated by a: character (e.g. -odac3,
-odac:hw:1,1). It depends on the host audio interface whether ade-
vice number or a name should be used. In the first case, an out of
range number usually resultsin an error and listing the valid device
numbers.

Set output file format to ogg. (csound 5.18 and later)
Set orchestramacro XXX tovaue YYY
Load plugin library LIBNAME.

Set the argument as the orchestrra file. Used when not scoreisre-
quired>. (Csound 5.18 and later).

Set ksmps override to N (6.05 and later).
Pulseaudio output stream name.

Set UDP port onwhichtolisten instruments/orchestracode (implies
--daemon)

Enables MIDI OUT operations to deviceid DEVICE. Thisflag a-
lowsparallel MIDI OUT and DAC performance. Unfortunately the
real-time timing implemented in Csound is completely managed by
DAC buffer sample flow. So MIDI OUT operations can present
sometimeirregularities. These irregularities can be reduced by us-
ing alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
devicenumbers(e.g. -Q hw:1,0). Inthe case of PortMidi and MME,
DEVICE should be a number, and if it is out of range, an error oc-
curs and the valid device numbers are printed.

Continually rewrite the header while writing the soundfile (WAV/
AIFF).

Override the sampling rate (SR) supplied by the orchestra.

Disable specia handling of MIDI controllers like sustain pedal, all
notes off etc., allowing the use of al the 128 controllers for any
purpose. Thiswill also set theinitial value of all controllersto zero.
Default: no.

realtime priority mode is switched on which the following effects:

1. al opcode audio file reading/writing is handled asynchronously
by a separate thread.

2. al init-pass operations are also performed asynchronously.

15

The Csound Command

-+rtaudio=string

-+rtmidi=string

-s, --format=short

--sample-accurate

--sched

--sched=N

-+server=string

-+skip_seconds=float

--Smacro:XXX=YYY

--strset

--syntax-check-only

-T, --terminate-on-midi

-t0, --keep-sorted-score

(max. length = 20 characters) Real time audio module name. The
default is PortAudio. Also available, depending on platform and
build options; Linux: alsa, jack; Windows. mme; Mac OS X: Core-
Audio. In addition, null can be used on all platforms, to disable the
use of any real time audio plugin.

(max. length = 20 characters) Real time MIDI module name. De-
faultsto PortMidi, other options (depending on build options): Lin-
ux: alsa; Windows. mme, winmm. In addition, null can be used on
all platforms, to disable the use of any real time MIDI plugin.

ALSA MIDI devices are selected by name and not number. So, you
need to use an option like -M hw:CARD,DEVICE where CARD
and DEVICE are the card and device numbers (e.g. -M hw:1,0).

Use short integer audio samples.

Start and stop instances of instruments at the nearest sample to
the requested time. Thisisin contrast to traditional Csound which
rounds thetimesto the nearest k-cycle. Note that this does not work
with tied notes.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -o dac or -0 devaudio). See also --sched=N be-
low.

Linux only. Same as --sched, but allows specifying a priority val-
ue: if N is positive (in the range 1 to 99) the scheduling pol-
icy SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Pulseaudio server name.

(min: 0) Start playback at the specified time (in seconds), skipping
earlier eventsin the score and MIDI file.

Set score macro XXX tovaueYYY

Csound 5. The--strset option all ows setting strset string valuesfrom
the command line, in theformat '--strsetN=VALUE'. It isuseful for
passing parameters to the orchestra (e.g. file names).

Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestraperformsthe score. Thisoption isexclusive of the--i-only
flag. (Csound 5.08 and later).

Terminate the performance when the end of MIDI fileis reached.

Prevents Csound from deleting the sorted scorefile, score.srt, upon
exit.

16

The Csound Command

-t NUM, --tempo=NUM

-U UTILITY, --utility=UTILITY

-u, --format=ulaw

--vbr-quality=X

-v, --verbose

--version
-W, --wave, --format=wave

-X FILE, --extract-score=FILE

-Z, --dither

-Z, --dither--triangular, --dither--
uniform

-z NUM, --list-opcodesNUM

Use the uninterpreted beats of score.srt for this performance, and
set theinitial tempo at NUM beats per minute. When thisflag is set,
the tempo of score performanceisalso controllable from within the
orchestra. WARNING: this mode of operation is experimental and
may be unreliable.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Use u-law audio samples.

Set variable bit-rate quality for output to ogg. (Csound 6.03 and
|ater).

Verbosetranslate and run. Prints details of orch translation and per-
formance, enabling errors to be more clearly located.

Exits after printing version information.
Write aWAYV format soundfile.

Extract a portion of the sorted score, score.srt, using the extract file
FILE (see Extract).

Switch on dithering of audio conversion frominternal floating point
to 32, 16 and 8-bit formats. The default form of the dither is trian-
gular.

Switch ondithering of audio conversionfrominternal floating point
to 32, 16 and 8-hit formats. In the case of -Z the next digit should
beal (for trangular) or a2 (for uniform). The exact interpretation
depends on the output system.

List opcodesin this version:
¢ no NUM, just show names
¢ NUM =0, just show names

« NUM =1, show argumentsto each opcode using the format <op-
name> <outargs> <inargs>

« NUM = 2, show names including deprecated ones

* NUM = 3, show argumentsto each opcode, including deprecated
ones, using the format <opname> <outargs> <inargs>

Command-line Flags (by Category)

Listed below are the command line available in Csound5 organized by categories. Various platform im-
plementations may not react the same way to different flags!

Y ou can view the command line flags organized alphabetically in Command-line Flags (Alphabetically).

The format of acommand is either:

csound [f1 ags] [orchname] [scorename]

17

The Csound Command

or

csound [f1 ags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a“-",“--" or “-+”), and name argu-
ments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags that
start with “--" and “-+" usually take an argument themselves using “=".

Audio File Ouput
-3, --format=24bit

-8, --format=uchar

-A, --aiff, --format=aiff
-g, --format=alaw

-c, --format=schar

-f, --format=fl oat

--format=type

-h, --noheader

-i FILE, --input=FILE

-J, --ircam, --format=ircam

-K, --nopeaks
-1, --format=long
-n, --nosound

Use 24-bit audio samples.

Use 8-hit unsigned character audio samples.

Write an AIFF format soundfile. Use with the -c, -s, -1, or -f flags.
Use a-law audio samples.

Use 8-hit signed character audio samples.

Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

Set the audio file output format to one of the formats available in
libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, nis, paf, pvf, raw, sd2, sds, svx, voc, wé4, wav, wavex
and xi. Can aso be used as --format=type:format or --format=for-
mat:typeto set both the file type (wav, aiff, etc.) and sample format
(short, long, float, etc.) at the same time.

No header on output soundfile. Don't write afile header, just binary
samples.

Input soundfile name. If not afull pathname, the file will be sought
first in the current directory, then in that given by the environment
variable SDIR (if defined), then by SFDIR. The name stdin will
cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer valuein the range 0 to 1023, or a device name separated
by a: character. It depends on the host audio interface whether a
device number or a name should be used. In thefirst case, an out of
range number usually resultsin an error and listing the valid device
numbers.

The audio coming in using -i can be received using opcodes like
inch.

Write an IRCAM format soundfile.
Do not generate any PEAK chunks.
Use long integer audio samples.

No sound. Do all processing, but bypass writing of sound to disk.
This flag does not change the execution in any other way.

18

The Csound Command

-0 FILE, --output=FILE

--0g9
--vbr-quality=X

-R, --rewrite

-s, --format=short
-u, --format=ulaw
-W, --wave, --format=wave

-Z, --dither

-Z, --dither--triangular, --dither--
uniform

Output Fileld tags

-+id_artist=string
-+id_comment=string
-+id_copyright=string

-+id_scopyright=integer

Output soundfile name. If not afull pathname, the soundfilewill be
placed inthedirectory given by the environment variable SFDIR (if
defined), else in the current directory. The name stdout will cause
audio to bewritten to standard output, while null resultsin no sound
output similarly to the -n flag. If no nameisgiven, the default name
will be test.

Thename dac or devaudio (you can use-odac or -0 dac) will request
writing sound to the host audio output device. It ispossibleto select
a device number by appending an integer value in the range O to
1023, or adevice name separated by a: character. It depends on the
host audio interface whether a device number or a name should be
used. In the first case, an out of range number usualy resultsin an
error and listing the valid device numbers.

Set output file format to ogg. (Csound 5.18 and later).

Set variable bit-rate quality for output to ogg. (Csound 6.03 and
|ater).

Continually rewrite the header while writing the soundfile (WAV/
AIFF).

Use short integer audio samples.
Use u-law audio samples.
Write aWAYV format soundfile.

Switch ondithering of audio conversionfrominternal floating point
to 32, 16 and 8-hit formats. The default form of the dither is trian-
gular.

Switch on dithering of audio conversion frominternal floating point
to 32, 16 and 8-bit formats. In the case of -Z the next digit should
beal (for trangular) or a2 (for uniform). The exact interpretation
depends on the output system.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile (no
spaces)

(max. length = 200 characters) Copyright tag in output soundfile (no
spaces)

(Sincleversion 6.05) Simple copyright/licence encoded asan integer.
Codingis:

0: "All rights reserved" (default)

1: "Creative Commons Attribution-NonCommercial-NoDerivatives
(CCBY-NC-ND)"

2. "Creative Commons Attribution-NonCommercial-ShareAlike
(CCBY-NC-sA)"

19

The Csound Command

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"
. "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

. "Creative Commons Attribution-ShareAlike (CC BY-SA)"

: "Creative Commons Attribution-ShareAlike (CC BY)"

: "Licenced under BSD"

~NOoO oA W

-+id_date=string (max. length = 200 characters) Date tag in output soundfile (no
spaces)

-+id_software=string (max. length = 200 characters) Software tag in output soundfile (no
spaces)

-+id_title=string (max. length = 200 characters) Title tag in output soundfile (no
spaces)

Realtime Audio I nput/Output

-i adc[DEVICE], --input=adc[DE- The name devaudio or adc will request sound from the host audio

VICE] input device. It is possible to select a device number by appending
an integer valuein the range 0 to 1023, or a device name separated
by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the host
audio interface whether a device number or a name should be used.
In the first case, an out of range number usually resultsin an error
and listing the valid device numbers.

-0 dac[DEVICE], --out- The name dac or devaudio (you can use -odac or -o dac) will re-

put=dac[DEVICE] quest writing sound to the host audio output device. It is possible to
select a device number by appending an integer value in the range
0to 1023, or adevice name separated by a: character (e.g. -odac3,
-odac:hw:1,1). It depends on the host audio interface whether ade-
vice number or a name should be used. In the first case, an out of
range number usually resultsin an error and listing the valid device
numbers.

-+rtaudio=string (max. length = 20 characters) Real time audio module name. The
default is PortAudio (all platforms). Also available, depending on
platform and build options: Linux: alsa, jack; Windows: mme; Mac
OS X: CoreAudio. In addition, null can be used on all platforms, to
disable the use of any real time audio plugin.

--realtime realtime priority mode is switched on which the following effects:

1. al opcode audio file reading/writing is handled asynchronously
by a separate thread.

2. al init-pass operations are also performed asynchronously.

-+server=string Pulseaudio server name.

-+output_stream=string Pulseaudio output stream name.

-+input_stream=string Pulseaudio input stream name.

-+jack_client=[client_name] The client name used by Csound, defaults to 'csound5'. If multiple

instances of Csound connect to the JACK server, different client

20

The Csound Command

-+jack_inportname=[input port
name prefix], -+jack_outport-
name=[output port name prefix]

MIDI File Input/Ouput
--deviceg[=X]

-F FILE, --midifile=FILE

--midioutfile=FILENAME

-+mute_tracks=string

-+raw_controller_mode=boolean

-+skip_seconds=float

-T, --terminate-on-midi

MIDI Realtime I nput/Ouput

-M DEVICE, --midi-device=DE-
VICE

--midi-key=N

--midi-key-cps=N

names need to be used to avoid name conflicts. (Linux and Mac OS
X only)

Name prefix of Csound JACK input/output ports; the default is'in-
put' and ‘output’. The actual port name is the channel number ap-
pended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nputl (record left)
csound5: i nput 2 (record right)
csound5: out put 1 (pl ayback left)
csound5: out put 2 (pl ayback right)

list audio devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

Read MIDI events from MIDI file FILE. The file should have on-
ly one track in Csound versions 4.xx and earlier; this limitation is
removed in Csound 5.00.

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Disable specia handling of MIDI controllers like sustain pedal, all
notes off etc., allowing the use of al the 128 controllers for any
purpose. Thiswill also set theinitial value of all controllersto zero.
Default: no.

(min: 0) Start playback at the specified time (in seconds), skipping
earlier eventsin the score and MIDI file.

Terminate the performance when the end of MIDI fileis reached.

Read MIDI events from device DEVICE. If using ALSA MIDI
(-+rtmidi=alsa), devices are selected by name and not number.
So, you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid de-
vice numbers are printed. When using PortMidi, you can use '-Ma
to enable al devices. Thisis also convenient when you don't have
devicesasit will not generate an error.

Route MIDI note on message key number to pfield N asMIDI value
[0-127].

Route MIDI note on message key number to pfield N as cycles per
second.

21

The Csound Command

--midi-key-oct=N Route MIDI note on message key number to pfield N as linear oc-
tave.

--midi-key-pch=N Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

--midi-velocity=N Route MIDI note on message velocity number to pfield N as MIDI
value [0-127].

--midi-velocity-amp=N Route MIDI note on message velocity number to pfield N as am-
plitude [0-OdbFS].

--midioutfile=FILENAME Save MIDI output to afile (Csound 5.00 and later only).

-+rtmidi=string (max. length = 20 characters) Real time MIDI module name. De-

faultsto PortMidi, other options (depending on build options): Lin-
ux: asa; Windows: mme, winmm. In addition, null can be used on
al platforms, to disable the use of any real time MIDI plugin.

ALSA MIDI devices are selected by nhame and not number. So, you
need to use an option like -M hw:CARD,DEVICE where CARD
and DEVICE are the card and device numbers (e.g. -M hw:1,0).

-QDEVICE Enables MIDI OUT operations to device id DEVICE. Thisflag al-
lowsparallel MIDI OUT and DAC performance. Unfortunately the
real -time timing implemented in Csound is completely managed by
DAC huffer sample flow. So MIDI OUT operations can present
sometimeirregularities. These irregularities can be reduced by us-
ing alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
devicenumbers(e.g. -Q hw:1,0). Inthe case of PortMidi and MME,
DEVICE should be a number, and if it is out of range, an error oc-
curs and the valid device numbers are printed.

Display

--csd-line-nums=NUM Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file (.csd).
Thisflag hasno effect if separate orchestraand score files are used.
(Csound 5.08 and later).

* 0=linenumbers are relative to the beginning of the orchestra or
score sections of the CSD

¢ 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

-d, --nodisplays Suppress all displays. See -O if you want to save the log to afile.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd

22

The Csound Command

file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

--displays Enables displays, reverting the effect of any previous -d flag.
-G, --postscriptdisplay Suppress graphics, use PostScript displays instead.

-g, --asciidisplay Suppress graphics, use ASCII displays instead.

-H#, --heartbeat=NUM Print a heartbeat after each soundfile buffer write:

* no NUM, arotating bar.

¢ NUM =1, arotating bar.

e NUM =2, adot ()

* NUM = 3, filesize in seconds.
* NUM =4, sound abell.

-m NUM, --messagelevel=NUM Message level for standard (terminal) output. Takes the sum of any
of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 =warning messages

e 128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0=raw amplitudes, no colours
¢ 32=dB, no colors

* 64 =dB, out of range highlighted with red

96 = dB, al colors
» 256 = raw, out of range highlighted with red

e 512 =raw, all colours

The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perfor-
mance. The coloring of raw amplitudes was introduced in version
5.04

--m-amps=NUM Message level for amplitudes on standard (terminal) output.
< 0= no note amplitude messages
* 1 = note amplitude messages

--m-range=NUM Messagelevel for out of range messages on standard (terminal) out-
put.

« 0= no samples out of range message

23

The Csound Command

» 1=samples out of range message
--m-warnings==NUM Message level for warnings on standard (terminal) output.
« 0= no warning messages
¢ 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
0 = absolute amplitude messages
¢ 1=dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
* 0= no colouring of amplitude messages
e 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
1 = print benchnark numbers

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled
on some terminals which print strange characters instead of modi-

fying text attributes. default: true.

-v, --verbose Verbosetranslate and run. Prints details of orch translation and per-
formance, enabling errors to be more clearly located.

-z NUM, --list-opcodesNUM List opcodesin this version:
¢ no NUM, just show names
¢ NUM =0, just show names

« NUM =1, show argumentsto each opcode using the format <op-
name> <outargs> <inargs>

« NUM = 2, show names including deprecated ones

* NUM = 3, show argumentsto each opcode, including deprecated
ones, using the format <opname> <outargs> <inargs>

Perfor mance Configuration and Control

-B NUM, --hardwarebufsamp- Number of audio sample-frames held in the DAC hardware buffer.
s=NUM This is a threshold on which software audio 1/O (above) will wait
before returning. A small number reduces audio 1/0 delay; but the
valueisoften hardwarelimited, and small valueswill risk datalates.
In the case of portaudio output (the default real-time output), the -
B parameter (more precisely, -B / sr) is passed as the "suggested

24

The Csound Command

-b NUM, --iobufsamps=NUM

-d

-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

--omacro:XXX=YYY

--port=N

-r NUM, --sample-rate=NUM

--sample-accurate

--sched

latency" value. Other than that, Csound has no control over how
PortAudio interprets the parameter. The default is 1024 on Linux,
4096 on Mac OS X and 16384 on Windows.

Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio I/O delay and im-
prove the accuracy of the timing of real time events. The default
is256 on Linux, 1024 on MacOS X, and 4096 on Windows. In re-
a-time performance, Csound waits on audio 1/0 on NUM bound-
aries. It also processes audio (and polls for other input like MIDI)
on orchestra ksmps boundaries. The two can be made synchronous.
For convenience, if NUM isnegative, the effective valueisksmps*
-NUM (audio synchronous with k-period boundaries). With NUM
small (e.g. 1) polling isthen frequent and also locked to fixed DAC
sample boundaries.

Note: if both -iadc and -odac are used at the same time (full duplex
real time audio), the -b option should be set to an integer multiple
of ksmps.

Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.

Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your termi-
nal, or piped from another process. Each line-event is terminated
by acarriage-return. Events are coded just like those in a standard
numeric score, except that an event with p2=0 will be performed
immediately, and an event with p2=T will be performed T seconds
after arrival. Events can arrive at any time, and in any order. The
score carry featureislegal here, as are held notes (p3 negative) and
string arguments, but ramps and pp or np references are not.

Note

The-L flagisonly valid on *NIX systemswhich have
pipes. It doesn't work on Windows.

Set orchestramacro XXX tovalueYYY

Set UDP port onwhichtolisten instruments/orchestracode (implies
--daemon)

Override the sampling rate (SR) supplied by the orchestra.

Start and stop instances of instruments at the nearest sample to
the requested time. Thisisin contrast to traditional Csound which
roundsthetimesto the nearest k-cycle. Note that this does not work
with tied notes.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -o dac or -0 devaudio). See also --sched=N be-
low.

25

The Csound Command

--sched=N

--Smacro:XXX=YYY

--strset

-+skip_seconds=float

-t NUM, --tempo=NUM

-j NUM, --num-threads=NUM

Miscellaneous
-@ FILE
-C, --cscore

--default-paths

-D, --defer-genl

--env:NAME=VALUE

--env:NAME+=VALUE

--expression-opt

Linux only. Same as --sched, but allows specifying a priority val-
ue: if N is positive (in the range 1 to 99) the scheduling pol-
icy SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Set score macro XXX tovalueYYY

Csound 5. The--strset option all ows setting strset string valuesfrom
the command line, intheformat '--strsetN=VALUE'. It isuseful for
passing parameters to the orchestra (e.g. file names).

(min: 0) Start playback at the specified time (in seconds), skipping
earlier eventsin the score and MIDI file.

Use the uninterpreted beats of score.srt for this performance, and
set theinitial tempo at NUM beats per minute. When thisflagis set,
the tempo of score performanceisalso controllable from within the
orchestra. WARNING: this mode of operation is experimental and
may be unreliable.

Make NUM processes available for rendering. Thisis only advan-
tageous if the number of processors on the computer is the same
or more that the number of requested processes. It also may slow
rendering down if ksmpsistoo small.

Provide an extended command-linein file“FILE”
Use Cscore processing of the scorefile.

Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

Defer GENOL soundfile loads until performance time.

Set environment variable NAME to VALUE. Note: not al environ-
ment variables can be set this way, because some are read before
parsing the command line. INCDIR, SADIR, SFDIR, and SDIR
are known to work.

Append VALUE to ;' separated list of search pathsin environment
variable NAME (should be INCDIR, SADIR, SFDIR, or SSDIR).
If afileisfound in multiple directories, the last will be used.

Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. Thismeansthat for examplethislineal = a2 + a3 will com-
pileasal Add a2, a3 instead of #a0 Add a2, a3 al = #a0 saving a

26

The Csound Command

--version

--get-system-sr

--help

--devices

temporary variable and an opcode call. Less opcode calls result
in reduced CPU usage (an average orchestra may compile about
10% faster with --expression-opt, but it depends largely on how
many expressions are used, what the control rateis (see also be-
low), etc.; thus, the difference may be less, but also much more).

e number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0O, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of less temporary variables are:

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control
rate (e.g. ksmps = 100)

« large orchestras may load faster dueto less different identifier
names

« index overflow errors (i.e. when messages like this Case2: in-
dx=-56004 (ffff253c); (short)indx = 9532 (253c) are printed
and odd behavior or a Csound crash occurs) may be fixed, be-
cause such errors are triggered by too many different (espe-
cialy arate) variable namesin a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

Warning
When --expression-opt isturned on, it is not allowed

to use the i() function with an expression argument,
and relying onthevalue of k-rate expressionsat i-time
isunsafe.

Exits after printing version information.

printssystem sr and exits, requires previous-o dac. |f the audio does
not support this request then -1 is reported.

Display on-line help message.

Givesalist of available audio devices and then exits.

27

The Csound Command

-I, --i-only

-+ignore_csopts=integer

--ksmps=N

-+max_str_len=integer

-N, --notify
--no-default-paths
--no-expression-opt

-O FILE, --logfile=FILE

--opcode-lib=LIBNAME

--0rc orchame

--syntax-check-only

-t0, --keep-sorted-score

-U UTILITY, --utility=UTILITY

-X FILE, --extract-score=FILE

i-time only. Allocate and initialize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides afast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

Set ksmps override to N (6.05 and later).

(min: 10, max: 10000) Maximum length of string variables + 1;
defaults to 256 allowing a length of 255 characters. The length of
string constants is not limited by this parameter.

Notify (ring the bell) when score or MIDI track is done.
Disables adding of directory of CSD/ORC/SCO to search paths.
Disables expression optimization.

LogoutputtofileFILE. If FILEisnull (i.e.-O null or --logfile=null)
all printing of messages to the consoleis disabled.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
gtarts. It isignored in .csoundrc and CsOptions.

Load plugin library LIBNAME.

Set the argument as the orchestra file. Used when not score is re-
quired>. (Csound 5.18 and later).

Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestraperformsthe score. Thisoption isexclusive of the--i-only
flag. (Csound 5.08 and later).

Prevents Csound from deleting the sorted scorefile, score.srt, upon
exit.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Extract aportion of the sorted score, score.srt, using the extract file
FILE (see Extract).

Csound Environment Variables

The following environment variables can be used by Csound:

» SFDIR: Default directory for sound files. Used if no full path is given for sound files.

28

The Csound Command

» SSDIR: Default directory for input (source) audio and MIDI files. Used if no full path isgiven for sound
files. May be used in conjunction with SFDIR to set separate input and output directories. Please note
that MIDI filesaswell as audio files are al'so sought inside SSDIR.

» SADIR: Default directory for analysis files. Used if no full path is given for analysisfiles.

e SFOUTYP: Setsthe default output file type. Currently only 'WAV', 'AIFF and '|RCAM' arevalid. This
flag is checked by the csound executable and the utilities and is used if no file output type is specified.

* INCDIR: Include directory. Specifies the location of files used by #include statements.

» OPCODEG6DIR: Defines the location of csound opcode plugins for the single precision float (32-hit)
version.

» OPCODEG6DIR64: Defines the location of csound opcode plugins for the double precision float (64-
bit) version.

» SNAPDIR: Is used by the FLTK widget opcodes when loading and saving snapshots.

* CSOUNDRC: Defines the csound resource (or configuration) file. A full path and filename containing
csound flags must be specified. This variable defaults to .csoundrc if not present.

* CSSTRNGS: In Csound 5.00 and later versions, the localisation of messages is controlled by two en-
vironment variables CSSTRNGS and CS_LANG, both of which are optional. CSSTRNGS pointsto a
directory containing .xmg files.

e CS LANG: Selects alanguage for csound messages.

* RAWWAVE PATH: Isused by the STK opcodes to find the raw wave files. Only relevant if you are
using STK wrapper opcodes like STKBowed or STKBrass.

» CSNOSTORP: If this environment variable is set to "yes", then any graph displays are closed automati-
cally at the end of performance (meaning that you possibly will not see much of them in the case of a
short non-realtime render). Otherwise, you need to click "Quit" in the FLTK display window to exit,
alowing for viewing the graphs even after the end of score is reached.

* MFDIR: Default directory for MIDI files. Used if no full path is given for MIDI files. Please note that
MIDI files are sought in SSDIR and SFDIR as well.

* CS OMIT_LIBS: Allows defining a list of plugin libraries that should be skipped. Libraries can be
separated with commas, and don't require the "lib" prefix.

For more information about SFDIR, SSDIR, SADIR, MFDIR and INCDIR see Directories and files.

The only mandatory environment variables are OPCODEGDIR and OPCODEGDIR64. It isvery important
to set them correctly, otherwise most of the opcodes will not be available. Make sure you set the path
correctly depending on the precision of your binary. if you run csound on a command line without any
arguments you should see some text like : Csound version 6.03.1 (double samples) May 10 2014. This
text refersto the double precision version.

CSSTRNGS and CS_LANG currently have very limited use since Csound has not yet been completely
trandated into other languages.

Other environment variables which are not exclusive to Csound but which might be of importance are:

e PATH: Thedirectory containing csound executables should be listed in this variable.

29

The Csound Command

e PYTHONPATH: If youintend to use CsoundV ST and python, the directory containingthe _CsoundV ST
shared library and the CsoundV ST.py file must be in your PYTHONPATH environment variable (or the
default path python searches in), so that the Python runtime knows how to load these files.

* LADSPA PATH and DSS_PATH: Theseenvironment variablesarerequired if you are using thedssi4cs
(LADSPA and DSSI host) plug-in opcodes.

* CDOCDIR: Specifies the directory where the html help files are located. Though not used by Csound
directly, this environment variable can help front-ends and editors (which implement it) to find the
csound manual.

Setting environment variables

On the command line

You can set environment variables on the command line or the configuration file .csoundrc by using the
command line flag --env:NAME=VALUE or --env:NAME+=VALUE, where NAME is the environment
variable name, and VALUE isits value. See Command-line Flags

Note

Please note that this method of setting environment variables will not work for variables
which are parsed before the command line arguments. SADIR, SSDIR, SFDIR, INCDIR,
SNAPDIR, RAWWAVE_PATH, CSNOSTOP, SFOUTY P should work, but the following
environment variables must be set on the system prior to running csound: OPCODEGDIR,
OPCODE6DIR64, CSSTRINGS, and CS_LANG. CSOUNDRC can currently (v. 5.02) be
set using --env, but this behavior is not guaranteed for future versions.

Windows

Linux

Mac

To set a csound environment on Windows XP and 2000 go to Control Panel->System->Advanced and
click on the button 'Environment Variables. On other versions of Windows earlier than Windows XP and
Windows 2000 you set environment variables in the autoexec.bat file. Go to 'My Computer', select C:
drive, right click on autoexec.bat, and select 'Edit'. The statement format is: SET NAME=VALUE.

You can set environment variables on Linux in many ways. You can set them using the export shell
command, by setting them on .bashrc or similar files or by adding them to the /etc/profilefile.

~$ export OPCODE6DI R64=/ User s/ you/ your/ Csound6é/ bui | d
in addition if the bash shell isthe default, then it is usually easier to edit your .bashrc or /etc/profile.

Notethat if users choose one of the above methods, ie editing the .bashrc filethen the environment variables
are executed when anew shell is created. This can be problematic if your application implements a Quartz
or Aquainterface and does not use the commandline.

If thisisthe case, then the standard solution (up to OS 10.3.9 and unless the application usesthe csoundAPI
and sets the environ variables directly) is to create an XML property list file (called a .plist file by the
QS). This file should nominally be located at ~/.MacOSX/Environment.plist. This has been a solution
specifically for the[csoundapi~] object for Pd on OS X. Since Pd usesan OS X native .app style packaging,

30

The Csound Command

and runs off of the Aqua interface, the standard means of supplying environment variables to Csound do
not work. The solution is to set Csound's environment variables for the Aqua environment.

Likely, most users will not have the hidden folder .MacOSX located in their $HOME directory (aka ~/)
This folder must first be created and the Environment.plist added to this folder. The contents of the Envi-
ronment.plist file should be something like:

<?xm version="1.0" encodi ng=' UTF-8"?>

<! DOCTYPE plist PUBLIC "-//Apple Conputer//DTD PLIST 1.0//EN'
"http://ww. appl e. com DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<di ct >

<key>OPCCDEDI R</ key>

<string>/Li brary/ Framewor ks/ CsoundLi b. f ramewor k/ Ver si ons/ 5. 1/ Resour ces/ Opcodes</ stri ng>

<key>OPCODEDI R64</ key>

<string>/ Vol unes/ Ext er nal HDY devel / csound5/ | i b64</string>

<key>| NCDI R</ key>

<string>/ Vol umes/ Ext er nal HOY CSOUNDY i ncl ude</ stri ng>

<key>SFDI R</ key>

<string>/ Vol umes/ Ext er nal HIY i Tunes/ csoundaudi o</ stri ng>

</dict>

</plist>

and so on, using the XML <key> tag for each environment variable required by the API and the <string>
tag for it's corresponding path on the system.

Please note that you must login out and login in for these changes to take effect.

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as
well as command line flags, to be combined in one file. The file has the extension .csd. This format was
originally introduced by Michael Goginsin AXCsound.

Thefileisastructured datafile which uses markup language, similar to any SGML such asHTML. Start
tags (<tag>) and end tags (</tag>) are used to delimit the various elements. Thefileis saved as atext file.

Structured Data File Format

Mandatory Elements
Thefirst taginthefilemust bethe start tag < CsoundSynthesizer> . Thelast tag inthefilemust betheend tag

</CsoundSynthesizer>. Thiselement isused to a ert the csound compiler to the .csd format. All text before
the start tag and after the end tag isignored by Csound. The tag may also be spelled < CsoundSynthesiser>.

Options (<CsOptions>)

Csound command line flags are put in the Options Element. This section is delimited by the start tag
<CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Orchestra (<CsInstruments>)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax
in this section are identical to the Csound orchestra file, and have the same requirements, including the

31

The Csound Command

header statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < Cslnstruments>
and the end tag </Cslnstruments>.

Score (<CsScore>)

Csound score statements are put in the Score Element. The statements and syntax in this section are iden-
tical to the Csound scorefile, and have the same requirements. The Score Element is delimited by the start
tag <CsScore> and the end tag </CsScore>.

Asan dternative Csound score statements can al so be generated by an external program using the CsScore
schemewith an attribute bin. Thelines upto the closing tag </CsScore> are copied to afile and the external
program named is called with that file name and the destination score file. The externa program should
create a standard Csound score.

Optional Elements

Included Base64 Files (<CsFileB>)

Base64-encoded files may be included with the tag < CsFileB filename=filename>, where filename isthe
name of the file to be included. The Base64-encoded data should be terminated with a </CsFileB> tag.
For encoding files, the csh64enc and makecsd utilities (included with Csound 5.00 and newer) can be used.
Thefile will be extracted to the current directory, and deleted at end of performance. If thereis an already
existing file with the same name, it is not overwritten, but an error will occur instead.

Base64-encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, wherefile-
name is the name of the file containing the MIDI information. There is no matching end tag. This was
added in Csound version 4.07. Note: using thistag is not recommended; use <CsFileB> instead.

Base64-encoded sample files may be included with the tag < CsSampl eB filename=filename>, wherefile-
nameisthe name of thefile containing the sample. Thereisno matching end tag. Thiswas added in Csound
version 4.07. Note: using this tag is not recommended; use <CsFileB> instead.

Included Unencoded Files (<CsFile>)

Unencoded files may be included with the tag < CsFile filename=filename>, where filename is the name
of thefile to beincluded. The data should be terminated with a</CsFile> tag alone on aline. Thefilewill
be extracted to the current directory, and deleted at end of performance. If thereisan aready existing file
with the same name, it is not overwritten, but an error will occur instead.

Version Blocking (<CsVersion>)

Versions of Csound may blocked by placing one of the following statements between the start tag <CsVer-
sion> and the end tag </CsVersion>:

Before #. #

or

After #. #

where #.# is the requested Csound version number. The second statement may be written simply as:
#. #

This was added in Csound version 4.09.

32

The Csound Command

Licence Information (<CsLicence> or <CsLicense>)

Licencing details can be included in between the start tag <CsLicence> and the end tag </CsLicence>.
Thereis no format for this information, any text is acceptable. This text will be printed by Csound to the
console when the CSD is run.

Licence Information (<CsShortLicence> or <CsShortLicense>)

From version 6.05 licencing details can be aso included in between the start tag <CsShortLicence> and
the end tag </CsShortLicence>. This offers seven well-known licences, coded as as an integer.

: "All rights reserved" (default)

: "Creative Commons Attribution-NonCommercia-NoDerivatives (CC BY-NC-ND)"
: "Creative Commons Attribution-NonCommercial -ShareAlike (CC BY-NC-SA)"

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"

. "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

: "Creative Commons Attribution-ShareAlike (CC BY-SA)"

: "Creative Commons Attribution-ShareAlike (CC BY)"

: "Licenced under BSD"

Embedded HTML (<html>)

Any valid HTML code can be embedded in the CSD file. This code should be structured exactly like an
ordinary Web page. This code can contain any valid HTML, JavaScript, Cascading Style Sheet, WebGL,
etc., etc. code.

NOUORAWNREO

In some Csound front ends and programming environments, including at least CsoundQt or Csound for
Android, thispagewill be parsed, executed, and displayed by aWeb browser embedded in the environment.
JavaScript code in this page will have access to a global csound object that implements the following
functions, which areasel ected subset of the Csound API. The names, datatypes, and uses of thesefunctions
are exactly the same as detailed in the Csound API Reference Manual.

[int] getVersion ();

conpi l eOrc (orchestra_text);

[doubl e] eval Code (orchestra_expression);
readScore (score_text);

set Cont r ol Channel (channel _nanme, nuneric_val ue);
[doubl e] get Control Channel (channel _nane);
message (message_string);

[int] getSr ();

[int] getKsnps ();

[int] getNchnls ();

/1 Not a part of the Csound APl -- called by the environment to detect whether Csound is running.
[int] isPlaying ();

The HTML element of the CSD file can be used to create custom user interfaces for the piece, to generate
score events and even orchestra code using JavaSscript, to store presets for widgets, and for many oth-
er purposes. The GameOfLife3D.csd [examples/GameOfLife3D.csd] and Lindenmayer Canvas.csd [exam-
ples/LindenmayerCanvas.csd] examples demonstrate these uses (tested in CsoundQt; running these exam-
ples requires additional resources found in the Csound examples directory in GIT).

Example

Below is asamplefile, test.csd, which renders a .wav file at 44.1 kHz sample rate containing one second
of al kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and tone.sco,
with the addition of command line flags.

33

examples/GameOfLife3D.csd
examples/GameOfLife3D.csd
examples/LindenmayerCanvas.csd
examples/LindenmayerCanvas.csd
examples/LindenmayerCanvas.csd

The Csound Command

<CsoundSynt hesi zer >
; test.csd - a Csound structured data file

<CsOpt i ons>
-W-d -0 tone.wav
</ CsOpti ons>

<CsVer si on> ; optional section
Before 4.10 ; these two statenents check for
After 4.08 ; Csound version 4.09

</ CsVer si on>

<Csl nst rument s>
; originally tone.orc
sr = 44100
kr = 4410
ksmps = 10
nchnls =1
instr 1
al oscil p4, p5, 1 ; sinple oscillator
out al
endin
</ Csl nst runent s>

<CsScor e>

; originally tone.sco

108192 10 1

1 0 1 20000 1000 ; play one second of one kHz tone
</ CsScor e>

</ CsoundSynt hesi zer >

Command Line Parameter File (.csoundrc)

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden.
Csound 5.00 and newer versions read this file from the HOME directory first (or the full path file name
defined by the CSOUNDRC environment variable), and then the current directory. If both exist, options
in the .csoundrc in the current directory will have higher precedence. It uses the same form as a.csd file,
but no tags are needed. Lines beginning with # or ; are treated as comments.

A .csoundrc file can contain something like this:
-+rtaudio=portaudio -odac2 -iadc2 -+rtmidi=winmme -M1 -Q1 -m0

Inthiscase, csound will generate real-time output and take realtimeinput from device 2, using the portaudio
driver interface. It will input and output realtime MIDI on interface 1. It will print very few messages (-
mO0). These options will be used by default when other options are not given inside the <CsOptions> of
the .csd file or the command line (See Order of precendence).

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The contral file contains an instrument list and two time points, from and to, in the form:

34

The Csound Command

instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated asi, f and t. The time points denote the beginning and end of
the extract in terms of :

[section no.] : [beat no.].
Each of the three parts of the argument is optional. The default values for missing i, f or t are:

all instrunents, beginning of score, end of score.

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance
(it exists as soon as score preprocessing has completed), the user may sometimes want to run these phases
independently. The command

scot fil enane

will process the Scot formatted filename, and leave a standard numeric score result in afile named score
for perusal or later processing.

The command
scscort < infile > outfile
will put anumeric scoreinfile through Carry, Tempo, and Sort preprocessing, leaving the result in outfile.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract
This command expects an already sorted score. An unsorted score should first be sent through Scsort then

piped to the extract program:

scsort < scorefile | extract xfile > score.extract

35

Using Csound

Csound can be operated in avariety of modes and configurations. The original method for running Csound
was asaconsole program (DOS prompt for Windows, Terminal for Mac OS X). This, of course, still works.
Running csound without any arguments prints out a list of command-line options, which are more fully
explained in the Command Line Flags (by Category) section. Normally, the user executes something like:

csound nyfile.csd
or separate orchestra (orc) and score (sco) files can be used:
csound myorchestra. orc nyscore.sco

You can find many .csd files in the examples folder. Most opcode entries in this manual also include
simple .csd files showing the usage of the opcode.

There are also many Front-Ends which can be used to run csound. A Front-End is a graphical program
that eases the process of running csound, and sometimes provides editing and composing functions.

Csound also has severa ways of producing output. It can:

» Read and write soundfiles (off-line rendering) - Using the -0 and -i flags specifying an output filename.
» Read and write digital audio using a sound card (real-time rendering) - Using the -odac and -iadc flags
» Read and write MIDI files (non-realtime) - Using the -F and --midioutfile flags.

* Read and write MIDI using a MIDI interface and controller (real-time control) - Using the -M and -
Qflags.

Csound's Console Output

When Csound runs, it prints a text output to the console, which shows data about the Csound run. A
Console output looks something like this:

time resolution is 0.455 ns
PortMDI real time MDl plugin for Csound
virtual _keyboard real time MD plugin for Csound
Port Audi o real -tine audi o nodul e for Csound
0dBFS | evel = 32768.0
Csound version 5.10 beta (float sanples) Apr 19 2009
I'ibsndfile-1.0.17
Readi ng options from $HOVE/ . csoundrc
Uni fi edCSD: oscil.csd
STARTI NG FI LE
Creating options
Creating orchestra
Creating score
orchname: /tnp/ csound- XYACV6. or c
scorenane: /tnp/csound-1YtLAJ. sco
rtaudi o: ALSA nodul e enabl ed
rtmdi: PortM D nodul e enabl ed
orch conpiler
17 lines read

instr 1
El apsed time at end of orchestra conpile: real: 0.129s, CPU. 0.020s
sorting score ...

done

El apsed time at end of score sort: real: 0.130s, CPU. 0.020s

36

Using Csound

How

Csound version 5.10 beta (float sanples) Apr 19 2009
di spl ays suppressed

0dBFS | evel = 32768.0

orch now | oaded

audi o buffered in 256 sanpl e-frame bl ocks

ALSA input: total buffer size: 1024, period size: 256
readi ng 1024-byte bl ks of shorts from adc (RAW

ALSA output: total buffer size: 1024, period size: 256
witing 1024-byte bl ks of shorts to dac

SECTI ON 1

ftable 1

new alloc for instr 1

B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Score finished in csoundPerforn()

inactive allocs returned to freespace

end of score. overall anps: 10000.0 10000.0
overal |l sanples out of range: 0 0

0 errors in performance

El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

345 1024-byte soundbl ks of shorts witten to dac

Renmovi ng tenporary file /tnp/csound-CoVcrm srt

Renmoving tenporary file /tnp/csound-1YtLAJ.sco ...

Renmovi ng tenporary file /tnp/csound- XYACV6. orc ...

The console output of Csound is quite verbose, particularly before the actual performance (like version,
plugins loaded, etc.). Performance actually started when the console printed:

SECTI ON 1

In this particular run, the lines:

new alloc for instr 1
B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Show that a single note for instrument 1, that lasted 2 seconds starting at time 0.000, was produced with
an amplitude of 10000 for both channel 1 and 2. An important section of the console output is:

end of score. overall anps: 10000.0 10000.0
overal |l sanples out of range: 0 0

Which shows the overall amplitude and the number of samples which were clipped because they were
out of range.

Theline:
El apsed time at end of performance: real: 2.341s, CPU. 0.050s

Shows the clock time and the CPU time it takes for the processor to complete the task. If CPU time is
lower than clock timeit meansthe csd can runin realtime (unlessit has some sections which are extremely
CPU intensive). The "real time" figureisthetotal running time and it is larger because it acounts for disk
access. module loading, etc. (CPU time s strictly number-crunching time). If you have a sound that lasts
for 100s and it takes 5s to generate it offline, it means that you are taking around 5% of CPU, and that
it runs on 0.05 of realtime.

Csound works

Csound processes and generates output using "unit generators” (ugens) called opcodes. These opcodes are
used to define instruments in the orchestra. When you run Csound, the engine loads the base Opcodes,
and the opcodes contained in separate loadable "opcode libraries' . It then interprets the orchestra (through
the orchestra reader). The engine sets up an instrument processing chain, which then receives events from
the score or in real-time. The processing chain uses the input/output modules to generate output. There are
modules that can write to file, or generate real-time audio output.

37

Using Csound

[Orchestra reader]

[Input/Output] - ‘J
v

External libraries

‘i Engine] ~Base npcudes]

L Ty o
r,f]_| Y Messages |

r

Loadble IlbrariEE]dl' _

The Csound Modular structure.

Csound's processing buffers

Csound processes audio in sample blocks called buffers. There are three separate buffer layers:

1. spout = Csound'sinnermost software buffer, contains ksmps sample frames. Csound processesreal -time
control events once every ksmps sample frames.

2. -b = Csound's intermediate software buffer (the "software" buffer), in sample frames. Should be (but
does not need to be) an integral multiple of ksmps (can equal ksmps too). Once per ksmps sample
frames, Csound copies spout to the -b buffer. Once per -b sample frames, Csound copies the -b buffer
to the -B "hardware" buffer.

3. -B = The sound card's internal buffer (the "hardware" buffer), in sample frames. Should be (and may
need to be) an integral multiple of -b. If Csound misses delivering a -b one time, the extra -b sample
framesin -b are till there for the sound card to keep playing while Csound catches up. But they can be
the same size if you're willing to bet Csound can always keep up with the sound card.

Amplitude values in Csound

Amplitude valuesin Csound are always relative to a"0dbfs" value representing the peak available ampli-
tude before clipping, in either an AD/DA codec, or in asoundfile with adefined range (which both WAVE
and AIFF are). In the original Csound, this value was always 32767, corresponding to the bipolar range
of a 16bit soundfile or 16bit AD/DA codec, Csound's only possible output back then. This remains the
default peak amplitude for Csound, for backward compatibility and you will find some of this manual's
examples still use this value (hence you find large amplitude values like 10000).

The 0dbfs value enables Csound to produce appropriately scaled valuesto whatever output format isbeing
used, whether 24hit integer, 32bit floats, or even 32hit integers. Put another way, the literal amplitude
values you write in a Csound instrument only match those written literally to the file if the Odbfs value

38

Using Csound

in Csound corresponds exactly to that of the output sample format. The consequence of this approach is
that you can write a piece with a certain amplitude and have it render correctly and identically (setting
aside of course the better dynamic range of the high-res formats) whether written to an integer or floats
file, or rendered in real-time.

Note

The one exception to thisis if you choose to write to a "raw" (headerless) file format. In
such cases the internal Odbfs value is meaningless, and whatever values you use are written
unmodified. This does enable arbitrary data to be generated or processed by Csound. Itisa
relatively exotic thing to do, but some users need it.

Y ou can choose to redefine the Odbfs value in the orchestra header, purely for your own convenience or
preference. Many people will choose 1.0 (the standard for SAOL, other software like Pure Data, and for
many plugin standards such as VST, LADSPA, CoreAudio AudioUnits, etc), but any valueis possible.

The common factor in defining amplitudes is the decibel (dB) scale, with 0dBgs always understood as
digital peak; hence "0dbfs' means "0dB Full-Scale value". This measure is different to actual amplitude
values, since amplitude values are alinear scale which show the actual oscillation around 0, so they can be
positive or negative. Decibel values are an absolute logarithmic scale, but can be useful for most opcodes
aswell. You can convert amplitude to and from decibels using the ampdb,ampdbfs, dbamp and dbfsamp
functions. This way, Csound enables the programmer to express al amplitudesin dB - lower amplitudes
will then be represented by negative dB values. This reflects industry practice (e.g. in level meters in
MmiXers, etc).

For example the same dB level of -6dB (half the amplitude) or -20dB are actually a different linear am-
plitude according to Odbfs like this:

Table 2. dBgsin relation to amplitude

dBgs O0dbfs= 32767 (default) |0dbfs=1 0dbfs = 1000 (unusual)
0dB 32767 1 1000

-6 dB 16384 05 500

-20dB 3276.7 0.1 100

Some Csound users might therefore be minded to express al levels in dBgs, and obviate any confusion
or ambiguity of level that may otherwise arise when using explicit amplitude values. The decibel scale
reflects the response of the ear pretty closely, and that when you want to express a really quiet level, it
might be easier and more expressive to write "-46dB" than "0.005" or "163.8".

The reason for using Odbfs is very ssimple: digital peak equates to maximum level regardless of sample
resolution. If you then define asignal at -110dB you will lose it if rendering to a 16hit file, but retain it
(audibly or not) if rendering to 24bit or better. In other words, thereisafixed ceiling, but amoveable floor
- you can define sounds as quietly asyou like (e.g. envelopetails), in apredictable way,and preserve them
or not (without changing the orch code at all), depending on the resolution (file or audio i/0) you render to.

A note on digital amplitude, decibels and dynamic range

A convenient aproximation of dynamic range for a certain digital precision isto calculate
the decibel interval between the minimum value and the maximum value for asample. Asa
rule of thumb, 1 bit (doubling of level) is 6dB, so 16bits = 96dB.

This is not entirely accurate since audio sample values are represented on a bipolar scale
with positive and negative values, and 1 bit is used for the sign. Therefore, for 16bit integer

39

Using Csound

samples actually use 1 bit for the sign and 15 bits for the values, so the actual dynamic range
is 90dB.

Real-Time Audio

The following information applies mostly to csound being run directly from the command line. Front-ends
implement these features in different ways, but knowledge of them is necessary in some of them.

The-i and -o flags can are used to specify realtime output instead of the ordinary non-realtime file output.
You should use - o dac for realtime output and -i adc for realtime input. Naturally, you can use either
one or both if your hardware supportsit. Y ou can a so specify the hardware you want to use by appending
a device number or name to the flag (See -i and -0).

Y ou might also need to use the -+rtaudio flag to specify the driver interface to be used. Csound defaults
to using Portaudio, which is cross-plaform and reliable, but for better performance, you might need to use
ALSA or JACK on linux, and CoreAudio on Mac. You can use ASIO on Windows if your version of
Portaudio has been compiled with ASIO support.

You can see alist of available devices by giving a device number which is out of range, for instance - o
dac99. Thiswill also reved if you have ASIO availableif you are using PortAudio.

Period & Buffer Sizes

Period and buffer sizes will vary greatly from one machine to another. Lower buffer sizes will result in
lower latency, but might cause breakups or clicks in the audio. The Csound flags which control period
and buffer sizesare -b and -B, respectively. Buffer size is hardware dependant, and some experimentation
may be necessary to find the optimal balance between low latency performance and uninterrupted audio
output. The values given to -b and -B should be powers of two, and the value of -B should be at least one
power of two higher than that of -b.

Currently, with - B set to 512, audio output latency is about 12 milliseconds, fast enough for reasonably
responsive keyboad playing. Even shorter latencies, are feasible on some systems.

Control Rate

Low values for ksmps will in general give a higher quality of synthesis, but will consume more system
resources. There is no hard and fast rule for setting ksmps - different orchestras will require different
control rates. A waveguide instrument will need a ksmps of 1 (and may not be suitable for realtime use),
whereas a simple FM synth may be run with a higher ksmps without noticeable degradation of sound. If
the FM synth were to be used to play a monophonic bassline, a very low ksmps may be used, however
more complex note clusters will require a higher ksmps. A well-tuned Linux system should be capable
of running even complex polyphonic synths with ksmps values as low as 4 or 8. If full duplex audio is
required, -b must be an integer multiple of ksmps. Bearing thisin mind, arule of thumb might be to only
use powers of two for ksmps.

Some settings differ according to platform. See further below for information for each platform.

Realtime I/O on Linux

Under Linux, the default portaudio/portmidi settings will result in higher latency than that which can be
achieved using AL SA and/or JACK (see aseparate manual section onthis). The portaudio/portmidi plugins
areaudio and MIDI servers, which provide an interface to the ALSA drivers, inamanner whichisin some
respects similar but fundamentally different from that provided by JACK.

40

Using Csound

Using ALSA

The highest level of control and the lowest possible level of latency are to be achieved using the ALSA
plugins in combination with the --sched flag. Using --sched requires that Csound be run as the root user,
which may be impossible or undesirable in some circumstances.

The ALSA plugins require the "name" of a"card" and a "device". Unless you have named your "cards"
in ~/.asoundrc (or /etc/asound.conf), the "names" will actually be numbers. In order to obtain alist of the
possible configurations, use the command line utilities "aplay", "arecord" and "amidi". These utilities are
included with most Linux distros, or can be downloaded and built from source here:

ftp://ftp.alsa-project.org/pub/utils/

Note

On every boot, the soundcard may have adifferent hardware order number, especially when
there are more soundcards in the system. This can be awkward as every time you have to
set the right number again. Y ou can assign a fixed order by adding some lines to /etc/mod-
probe.d/alsa-base-conf, for example for a card with the icel712 chip :

ALSA module ordering for soundcard
options snd slots=snd_icel712

Audio Output

Running the following command:

apl ay -

will give you alist of the audio playback devices available on your system. Typically this list will look
something like:

[....]
x% | st of PLAYBACK Hardware Devices **

card 0: A5451 [ALI 5451], device 0: ALI 5451 [ALI 5451]
[...]

If you have more than one card on your system, or if thereis morethan one device on your card, thelist will
of course be more complicated, however in all cases the information that is pertinent is the number/name
of the card/device. In order to use the above soundcard for audio output, the following flag would be added
to the Csound command line, ~/.csoundrc, or the <CsOptions>section of a CSD:

-+rtaudi o=al sa -0 dac

Output with dmix

If you would like to use Csound with dmix and your soundcard does not support hardware mixing of
audio streams, specia careis needed in setting up of software (-b) and hardware (-B) buffers. If you get
amessage from Csound's ALSA driver that ooks like the following:

41

ftp://ftp.alsa-project.org/pub/utils/

Using Csound

ALSA: -B 8192 not allowed on this device; use 7526 instead

thereisagood chance that you may be using dmix. If you are using dmix, the -b and -B settings of Csound
must be synced the period_size and buffer_size of dmix respectively, using aratio of the sr for the Csound
project to the sample rate that dmix is set up to. The following formula will determine what settings to
use for Csound given the settings of dmix:

-b
-B

(csound_sr/dm x_sanpl e_rate) * dm x_peri od_size
(csound_sr/dmi x_sanple_rate) * dm x_buffer_size

For example, if dmix is set to 48000 sample rate, aperiod_size of 1024, and a buffer_size of 8192, when
running a Csound project with sr=48000, the settings for buffers should be "-b 1024 -B8192". If the
sr=24000, the settings for buffers should be "-b 512 -B4096".

Because of this relationship, if a Csound project's sr does not evenly divide into the sample_rate used by
dmix, then it may be difficult if not imposible to set the correct setting for -b and -B due to rounding
errors. It is suggested then that if you are using sample rates different than what your setting is for dmix,
then you may want to configure dmix to have a period_size and buffer_size that can be evenly divided
by the ratio between the csound sr and dmix sample rate. For example, to run a project with sr=16000,
the following dmix setting:

pcm am x {
type dmi x
i pc_key 50557
sl ave {
pcm "hw 0, 0"
period_time O
#peri od_si ze 1024
#buf fer_size 8192
period_si ze 1536
buf fer_size 12288
}
bi ndi ngs {
00
11
}
}

route ALSA software through pcm am x
pcm !default {

type plug
sl ave. pcm "am x"

}

with period_size 1536 and buffer_size 12288 will divide nicely by 3 (the ratio of the csound sr to the dmix
sample _rate) to get "-b 512 -B4096" ((16000/48000) * 1536 = 512, (16000/48000) * 12288 = 4096).

Note

For most soundcards that this affects, the default sample rate for the card will be 48000 and
the defaults for dmix will be 1024 and 8192.

Audio Input

Typically the same card will be used for both input and output, so to continue using the foregoing example,
theflag:

-i adc:hw 0,0

42

Using Csound

MIDI

would be added for audio input from Card 0 Device 0. To use the default card employ one of the following
flags, with the forementioned warning that this will not necessarily work:

-i adc

If you wish to use a different card or device for input, running the following utility from the command
line will provide alist of input devices:

arecord -1

If, by way of an example, you wanted to use a USB audio interface, which is the second "card" in your
system, for output, but wanted to use your internal soundcard, the first card in your setup, for input, you
would put the following flags somewhere useful:

-+rtaudio=alsa -i adc:hw 0,0 -0 dac:hw 1,0

If you wanted to use the second device on your USB interface, to send audio to a specific channel, for
instance, you would use the following flags:

-+rtaudi o=al sa -i adc:hw. 0,0 -0 dac:hw 1,1

2 Midi drivers are available;
* Raw Midi.

» AlsaSequencer (since version 5.18).

MIDI Input (Raw Midi driver)

In order to enable your orchestrato receive MIDI input you can use VirMIDI or MIDIThru, whichever you
prefer. Setting up these virtual MIDI portsisatopic that has been covered extensively elsewhere, see The
Linux MIDI how-to [http://www.midi-howto.com/] or browse your distro's documentation or the ALSA
documentation for instructions on how to install and configure either VirMIDI or MIDIThru (seqdummy).
Once you have done so run:

amdi -|
for alist of available devices. Typically thiswill look something like the following:

[..]

Device Name

hw:1,0 Virtual Raw MIDI (16 subdevices)
hw:1,1 Virtual Raw MIDI (16 subdevices)
hw:1,2 Virtual Raw MIDI (16 subdevices)
hw:1,3 Virtual Raw MIDI (16 subdevices)
hw:2,0,0 PCR MIDI

hw:2,0,1 PCR 1

In this example, Csound can connect to any of the four available Virtual Raw MIDI ports, where it will
listen for MIDI input. The following flag instructs Csound to listen on the first of these ports:

43

http://www.midi-howto.com/
http://www.midi-howto.com/
http://www.midi-howto.com/

Using Csound

-+rtmdi=alsa -Mw 1,0

You will then need to connect your hardware or software controller to the port which is hosting your
Csound synthesizer. The simplest way to do thisis using the "aconnect" utility. Run:

aconnect -1li

for alist of available input devices, and:

aconnect -lo

for alist of available output devices (including the port to which Csound has been connected). These
should give something like the following:

#aconnect -li

client O: 'System' [type=kernel]
0 'Timer '
1'Announce

Connecting To: 15:0

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirmIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirmiDI 1-1

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirmIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirmIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '
2'PCR?2 '

#aconnect -10

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirmIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirmiDI 1-1

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirmIDI 1-2

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirmIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '

In the following example, the USB keyboard which is listed above as client 24 will be connected to a
Csound synthesizer which islistening on thefirst VirMIDI port. The keyboard has three output ports. The
first (24:0) transmits messages received on the MIDI in port, the second (24:1) transmits keyboard and
controller messages, and the third (24:2) transmits system exclusive messages. The following command
connects the second port of the keyboard to the Csound synthesizer:

aconnect 24:1 20:0

Using Csound

Remember that Csound acts asaraw MIDI device and is not an ALSA sequencer client. This means that
Csound will not appear in MIDI device listings and will not be available for use directly with aconnect, so
you must connect to avirtual device (like 'virtual raw MIDI" or 'MIDI through') for persistent connections,
or conect directly to the destination using command line flags.

MIDI Output (Raw Midi driver)

Csound can be connected to any device which shows up on the ALSA sequencer list of output ports,
obtained by "amidi -1" as above. In order to connect a Csound synthesizer to the MIDI out port of the
keyboard listed above, the following flag would be used:

-Chw 2,0, 0

MIDI Input and Output (Midi Sequencer driver)

Thisdriver isto be preferred over the Raw Midi driver. It has these advantages:
» Multiple concurrent access.
» Scheduled by priority queues.

» Real-time event dispatching i.e., the role of the Midi Sequencer is to deliver events at the right time
(sequence) to the right destination (device).

The following command will call the Midi Sequencer. Here it listens to midi port 20. The midi output
port is also 20:

-+rtm di =al saseq - M20 - Q0

Csound will automatically create its own ALSA sequencer port. For alist of available devices, use the
following command:

aconnect -i -0
Thiswill create output that will look something like the following:

client 0: 'System' [type=kernel]
0 Timer
1'Announce
client 14: 'Midi Through' [type=kernel]
0 'Midi Through Port-0'
client 20: 'M Audio Delta 1010’ [type=kernel]
0'M Audio Delta 1010 MIDI'
client 130: 'Csound' [type=user]
0 'Csound

The output of Csound will contain lineslike:

ALSASEQ: opened MIDI output sequencer
ALSASEQ: created output port 'Csound' 130:0
ALSASEQ: connected to 20:0

45

Using Csound

ALSASEQ: opened MIDI input sequencer
ALSASEQ: created input port ‘Csound' 130:0
ALSASEQ: connected from 20:0

Scheduling

If you are able to run Csound as the root user, using the "--sched" flag will dramatically improve reatime
performance, when using AL SA, however you may hang your systemif you do something stupid. DONOT
use"--sched" if you areusing JACK for audio output. JACK controls scheduling for the audio applications
connected to it, and also tries to run at the highest possible priority. If the "--sched" flag is used, Csound
and JACK will be competing rather than cooperating, resulting in extremely poor performance.

Using Pulseaudio

Support for Pulseaudio [http://www.pul seaudio.org/] was added in Csound 5.09. Y ou can specify the fol-
lowing settings:

1. Sink names: it's possible to use a number instead of the full name, so -odac:1 would select your second
device (count starts at 0).

2. Server name: it's possibleto connect to a specific server by using -+server=<server_string>where serv-
er_string is a name of a server or a more complex server selection string (see pulseaudio.org [http://
www. pul seaudio.org/] on server strings). This should be network transparent and should allow connec-
tions to remote machines.

3. Stream names. it is possible to label the streams generated by csound, by using -+out-
put_stream=<stream-name> and -+input_stream=<stream-name>

Here's an example command line:

csound -odac:1 examples/trapped.csd -+rtaudi o=pul se -+server=unix:/tmp/pul se-victor/native -+output_stream=trapped

Mac OSX

Real-time Audio

OSX users can use either the PortAudio (default),auhal (or coreaudio), or the Jack realtime audio modul es.
The auhal moduleis a native OSX module which provides good latency, but it might not work with some
external hardware. The Jack module can be used for interconnecting with other applications, but you will
need to install the JackOSX software in order to use it. To activate a realtime module, you can use the -
+rtaudio flag with value of portaudio, auhal, or jack. The default value is portaudio, which is activated
by default without specifying it.

Y ou also need to specify the sound device you want to use, and specify that you want to generate real-time
audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -0 dac flag, which
tells csound to output to the Digital-to-Analog converters instead of afile. By adding a number after the
flag (e.g. -odac2), you can choose the device number you want. To find out available devices in your
system, you can use a large out of range number (e.g. -odac99), and Csound will report an error, and list

46

http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/

Using Csound

available devices. This numbering convention works for portaudio and auhal, but for Jack, you will need
to pass the name of the desired output device after a colon (e.g. -odac:system:playback).

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio inputs.
Y ou can again select the device by its number (or name), and check for available devices using an out of
range number. Note that for input you use 'adc' instead of 'dac’. Make sure you have the appropriate input
selected in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on OSX, you can use the -M flag for MIDI input and the -Q flag for MIDI
output. Y ou might need to specify the device number after the flag (e.g. -M2), and again, you can find the
available devices by giving an out of range humber.

Csound will use PortMidi as the default MIDI module, but there's al'so a native coremidi module, which
can be activated with the flag:

-+rtmidi=cmidi

The coremidi module corrently only supports MIDI input.

A typical set of flagsto enable Real-time Audio and MIDI 1/O can look like:

-+rtmidi=cmidi -M1 -+rtaudio=auhal -odac3 -iadc3

Windows

Real-time Audio

Windows users can use either the default PortAudio Realtime module, or the winmm Realtime Audio
Module. The winmm module is a native windows module which provides great stahility, but latency will
usually be too high for realtime interaction. To activate a realtime module, you can use the -+ rtaudio flag
with value of portaudio or winmme. The default value is portaudio, which is activated by default without

specifying it.

Y ou also need to specify the sound device you want to use, and specify that you want to generate real-time
audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -0 dac flag, which
tells csound to output to the Digital-to-Analog converters instead of afile. By adding a number after the
flag (e.g. -odac2), you can choose the device number you want. To find out available devices in your
system, you can use alarge out of range number (e.g. -odac99), and csound will report an error, and list
available devices.

When choosing the device number under Portaudio, you are also choosing the driver interface, since Por-
taudio supports WinMME, DirectX and ASIO. If you have an ASIO capable interface or an ASIO driver
emulator like ASIO4ALL [http://www.asiodall.com], the device will show multiple times, once for each
driver interface. ASIO will give you the best latency on your system, so if available it should be your
choice for realtime audio output.

Enabling realtime audio input isdone using -iadc, which makes csound listen to the realtime audio outputs.
You can again select the device by its number, and check for available devices using an out of range

47

http://www.asio4all.com
http://www.asio4all.com

Using Csound

number. Note that for input you use'adc’ instead of ‘dac’. Make sure you have the appropriate input selected
in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on Windows, you can use the -M flag for MIDI input and the -Q flag for MIDI
output. Y ou might need to specify the device number after the flag (e.g. -M2), and again, you can find the
available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's also a native winmme module, which
can be activated with the flag:

-+rtmidi=winmme
A typical set of flagsto enable Real-time Audio and MIDI 1/0O can look like:

-+rtmidi=winmme -M 1 -Q1 -+rtaudio=portaudio -odac3 -iadc3

Realtime I/0O with JACK Connection Kit

Under a number of systems the JACK connection kit can be used for both audio and MIDI input/output.
For more details on this, see

http://jackaudio.org/faq

Using JACK

The simplest way to use the JACK plugin enabling input and output is as follows:

-+rtaudi o=jack -i adc -o dac

Additionally, there are some command line options specific to JACK:

JACK Command-line Flags

-+jack_client=[client_name] The client name used by Csound, defaults to ‘'csound6'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts.

-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is'in-
name prefix], -+jack_outport- put' and ‘output’. The actual port name is the channel number ap-
name=[output port name prefix] pended to the name prefix. Example: with the above default set-

tings, a stereo orchestra will create these portsin full duplex oper-

ation:

csound6: i nput 1 (record left)

csound6: i nput 2 (record right)

csound6: out put 1 (pl ayback left)

csound6: out put 2 (pl ayback right)

48

http://jackaudio.org/faq

Using Csound

Connecting Csound to other JACK clients

By default, connections are made to the first ports on the jack port list (generally these default to system
physical ports).The plugin can connect to ports specified as names or numbers.

As names:. the port name prefix is used, e.g. "system:playback ", "system:capture ", "asa pcm:play-
back " or"alsa_pcm:capture ". For example: -odac:system:playback (for output), -iadc:system:capture .
The port name prefix excludes channel names.

As numbers: the base port number is given, where the connection is made to this and subsequent ports
up to the number of channels. For a base port number N we will have the connections as N+0, N+1, ...,
N-+nchnls-1. For instance -odac2 with nchnls=1 will connect outputs to ports 2 and 3. Ports are listed as
in other input/output backends.

Note that ports can be prevented from autoconnecting by passing -odac:null and -iadc:null, for output and
input, respectively. Connections can aso be made manually using jack connection tools.

Notes on buffer sizes

Audio datais received from and sent to the JACK server by Csound using aring buffer that is controlled
by the-b and -B flags. -B isthetotal size of the buffer, while -b isthe size of asingle period. These values
are rounded so that the total size is an integer multiple of, and greater than the period size. The difference
of the Csound buffer and period size must be greater than or equal to the JACK period size.

If both -iadc and -odac are used at the sametime, the -b option should be set to an integer multiple of ksmps.

An example of buffer settings for low latency on afast Linux system:
jackd -d alsa -P -r 48000 -p 64 -n 4 -zt &
csound -+rtaudio=jack -b 64 -B 256 [...]
with real time scheduling (as root):
jackd -R -P 90 -d alsa -P -r 48000 -p 64 -n 2 -zt &
csound --sched=80, 90,10 -d -+rtaudio=jack -b 64 -B 192 [...]

To improve performance, use ksmps values like 32 and 64.
The sample rate of the orchestra must be the same as that of the JACK server.

Jack canalso beused for MIDI |O. For this-+rtmidi=jack isneeded. For input -M followed by therequested
jack MIDI port name is used to connect directly to an input stream. For output -Q followed by the jack
port nameis used. The options -+jack_midi_inportname= and -+jack_midi_outportname= can be used to
rename Csound's MIDI 10 ports.

Optimizing Audio I/O Latency

To achieve the lowest latency possible without audio break ups, a combination of variables needs to be
tweaked. The final valueswill be platform and system dependent, and will also depend on the complexity
of the audio calculations performed. Y ou need to adjust ksmps in the orchestra, as well as the software (-
b) and harware buffer (-B) sizes.

Usually the simplest solution is the following:

1. Set ksmpsto avalue with agood tradeoff between quality and performance, without adjusting -B at all.

49

Using Csound

2. Set -b to anegative power of two of thisvalue.

To get the optimal values, start with something you think isgoing to betoo low, ie-1, and then continue
"upwards', -2, -4 and so on, until you stop getting x-runs (glitches). The real value of -b will be the
absolute value of -b * ksmps.

3. Reduce the hardware buffer (-B). Bring it down from the default (1024 on Linux, 4096 on Mac OS X,
16384 on Windows), halving it each time, until you start to get x-runs (glitches) again. Then take it
back up again until performance is continuous.

This process assumes you have a 16-bit soundcard. If you have a 24-bit soundcard, then -B should be 3/2,
or 3 times -b, rather than 2 or 4 times. Csound works with 32-bit floats, or 64-bit doubles whereas most
soundcards are 16 or 24-bit integer. -b is the internal buffer, so it's dealing with the 32 or 64-bit side of
things, whereas -B is the hardware buffer, so it's dealing with the 16 or 24-hit side. The csound default for
floatsis-B = 4 * -h. Thisisasane value for a 16 bit card. Y ou can usually get away with -B = 2* -b, but
thisis the absolute minimum. For example, if you set -b1024 -B2048, csound will tell you that:

audi o buffered in 1024 sanpl e-frame bl ocks
writing 4096-byte blocks to dac

4096 bytesis 32768 bits. 32768/32 = 1024, our sample-frame size, 1024 * 32/16 = 2048, our buffer size.
Were we to reduce the value of -B, we would need to reduce the value of -b by a corresponding amount
in order to continue to write 16-bit integers to dac. The minimum size of -b is (-B * bitrate)/32. That is
to say that the minimum ratio of -b to -B should be;

e 16-bit;: 1:2
o 24-bit: 2:3
e 32-hit: 1:1

While there is no theoretical maximum ratio, it makes no sense to have a very high ratio here, as the
software buffer hasto fill the hardware buffer before returning. If theratio ishigh, it will take along time,
defeating the purpose of setting asmall value for -b.

The value of -b is something that will need to be varied depending on the complexity of the instrument
you're working with, but because it's intimately related to the value of ksmps, it's better to synchronise it
with ksmps and go from there. One way to do it isto decide how long the release on your envelopes might
need to be at maximum (for desired effect), set the release on all envelopes to maximum, give yourself
agenerous value for -b, and then play. If it breaks up, double ksmps, repeat until smooth, then bring the
value of -b down asfar as possible.

The value of -B is primarily determined by operating system and soundcard. Figure out (using above
method) how low you can go, and use that value (or one higher for safety). If you have problems you'll
know that it's probably because of an inappropriate value for ksmps, too low avalue for -b, or denormals
(see denorm).

50

Configuring

Once you have either unpacked a binary distribution, or built Csound from sources, you will need to
configure Csound so that it will run properly on your system. Installers usually perform these steps for
you automatically.

On al platforms, make sure the directory or directories containing Csound's plugin libraries are in an
OPCCDE6DI R O OPCODE6GDI R64 environment variable depending on the precision of the compiled binary.
(Note that for csound5 these environment variables were OPCODEDI R and OPCODEDI R64.)

The Python opcodes currently require at least Python 2.4, which can be downloaded from www.python.org
[http://www.python.org] if it is not already on your system. You can check if it is available by typing
‘python’ on a command prompt or DOS window.

Windows

On Windows, make sure the directory or directories (normally the C: \ Progr am Fi | es\ Csound directory)
containing the Csound executables directory are in your PATH variable, or else copy all the executable
files to your Windows syst eng2 directory. Depending on your installation method, you might also need
to set the oPCODE6DI R and OPCODEGDI R64 environment variables. Assuming that Csound isinstalled to the
default location of C:\ Program Fi | es\ Csound you can use (otherwise set the paths accordingly):

set OPCODE6DI R=C: \ Program Fi | es\ Csound\ pl ugi ns
set OPCODE6DI R64=C: \ Program Fi | es\ Csound\ pl ugi ns64
set PATH=%PATH% C. \ Program Fi | es\ Csound\ bi n

Missing python24.dll or python25.dll

If you get a pop-up about the missing Python library (python24.dll or python25.dll) and
don't need the python opcodes, just delete C: \ Progr am Fi | es\ Csound\ pl ugi ns\ py. dI | and
C:\ Program Fil es\ Csound\ pl ugi ns64\ py. dl |, and the pop-up about the missing Python
library should be gone.

Unix and Linux

On Unix and Linux, either install the Csound program in one of the system bi n directories, typically / usr/
I ocal / bi n, and the Csound and plugin shared libraries in places like / usr/ 1 ocal /I 'i b/ csound/ pl ugi ns
or /usr/local /1ib/csound/ pl ugi ns64 and make sure that OPCODEGDI R and OPCODE6DI R64 environment
variable are set correctly.

CsoundAC

CsoundAC requires some additional configuration. On all platforms, CsoundAC requires that you have
Python installed on your computer. The directory containing the _csoundAC shared library and the
CsoundAC. py file must be in your PYTHONPATH environment variable, so that the Python runtime knows
how to load thesefiles.

51

http://www.python.org
http://www.python.org

Syntax of the Orchestra

The Csound orchestra (.orc) or the <Cslnstruments> section of acsd file, contains:

» A header section, which specifies global options for instrument performance

» A list of User defined opcodes and instrument blocks containing UDO and instrument definitions.

The orchestraheader, instrument blocks, and UDOs contain Or chestra statements. An orchestra statement

in Csound has the format:

| abel : result opcode argunentl, argunent2, ... ;comments

Thelabel is optional and identifies the basic statement that follows as the potential target of a go-to oper-
ation (see Program Flow Contral). A label has no effect on the statement per se.

Depending on their function, some opcodes produce no output, so they have no result value. Others take
no arguments and only produce aresult.

Every orchestra statement must be on asingle line, however long lines can be wrapped to anew line using
the '\ character. This character indicates that the next line is part of the current one, this way you can split
alinefor easier reading, like this:

a2 oschnk kcps, 1.0, kfndl, 0.0, 40, 203, 0.1, 0.2, kanfr, kanfr2, 148, \
0o, 0, 0,0 O, O, O, -1, \
kfnum 3, 4

Comments are optional and are for the purpose of letting the user document his orchestra code. Comments
begin with a semicolon (;) or // and extend to the end of the line. Comments can optionally be in C-style,
spanning multiple lines like this:

/* Anything in here --------
is a comrent which can span
several lines --------- */

The remainder (result, opcode, and arguments) form the basic statement. This also is optional, i.e. aline
may have only alabel or comment or be entirely blank. If present, the basic statement must be complete
on oneline, and isterminated by a carriage return and line feed.

The opcode determines the operation to be performed; it usually takes some number of input values (or
arguments, with amaximum value of about 800); and it usually has aresult field variable to which it sends
output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)

2. once at the beginning of each note (at initialization (init) time: i-rate)

3. once every performance-time control loop (perf-time control rate, or k-rate)
4.

once each sound sample of every control loop (perf-time audio rate, or a-rate)

Orchestra Header Statements

The Orchestra Header contains global information that applies to al instruments and defines aspects of
Csound output. It is sometimes referred to asinstr O, because it behaves as an instrument, but without k-
or a-rate processing (i.e. only opcodes and instructions that work at i-rate are allowed).

52

Syntax of the Orchestra

An orchestra header statement operates once only, at orchestra setup time. It ismost commonly an assign-
ment of some value to a global reserved symbol , e.g. sr = 20000. All orchestra header statements belong
to a pseudo instrument O, an init pass of which is run prior to all other instruments at score time 0. Any
ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09) provided it isan
init-time only operation. Statements that are normally placed in an orchestra header are;

* 0dbfs

« A4

* ctrlinit
« ftgen

o kr

* ksmps
* massign
* nchnls
* pgmassign
+ pset

» seed

o o

e strset

For example, a Csound header may look like:

xXXsr = 44100
kr = 4410
ksmps = 10
nchnls = 2
Odbfs =1

massign 1, 10

Instrument and Opcode Block Statements

Aninstrument block iscomprised of ordinary statementsthat set values, control thelogical flow, or invoke
the various signal processing subroutines that lead to audio output. Statements that define an instrument
block are:

e instr
e endin

An instrument block looks like this:

instr 1 ;A sinple sine wave oscill ator
aout oscils 10000, 440, O
out aout

53

Syntax of the Orchestra

endin
Statements that define a user defined opcode (UDO) block are
» opcode
* endop

See the UDO section for more information.

Ordinary Statements

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for
k- and a-rate results), with the sole exception of the init opcode. Most generators and modifiers, however,
produce signals that depend not only on the instantaneous value of their arguments but also on some
preserved internal state. These performance-time units therefore have an implicit init-time component to
set up that state. The run time of an operation which produces no result is apparent in the opcode.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and condi-
tional values.

Types, Constants and Variables

Constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and
do not change in value.

Variables are named cells containing numbers. They are available continuously and may be updated at
one of the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e.
they take on only one value at any given time) and are primarily used to store and recall controlling data,
that is, data that changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables).
i- and k-variables are therefore useful for storing note parameter values, pitches, durations, slow-moving
frequencies, vibratos, etc. a-rate variables, on the other hand, are arrays or vectors of information. Though
renewed on the same perf-time control passask-rate variables, these array cellsrepresent afiner resolution
of time by dividing the control period into sample periods (see ksmps). a-rate variables are used to store
and recall data changing at the audio sampling rate (e.g. output signals of oscillators, filters, etc.).

Some types of variables can be thought of as signals. For example a-rate and k-rate variables are signals
that have a constant update frequency (see kr and sr). This abstraction is generally quite useful, but be
aware that a-rate signals are actually vectors which are processed at k-rate, i.e. Csound works at k-rate
internally but processes ksmps number samples for each a-rate variable on every control pass.

There are other types of signals that require rates that don't match kr or sr. f-rate and w-rate signals are
used for spectral processing and their rate is determined by the window size and overlap factor.

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved,
and they may carry information from passto pass (e.g. from initialization timeto performancetime) within
asingleinstrument. Local variable names begin with the letter p, i, k, or a. The same local variable name
may appear in two or more different instrument blocks without conflict.

Global variables are cells that are accessible by all instruments. The names are either like local names
preceded by theletter g, or are special reserved symbols. Global variables are used for broadcasting general

54

Syntax of the Orchestra

values, for communicating between instruments (semaphores), or for sending sound from one instrument
to another (e.g. mixing prior to reverberation).

Given these distinctions, there are nine forms of local and global variables:

Table 3. Typesof Variables

Type When Renewable Local Global

reserved symbols permanent -- rsymbol

score pfields i-time p number --

init variables i-time i name gi name

control signals p-time, k-rate k name gk name

audio signals p-time, k-rate (all audio|aname ganame
samplesin ak-pass)

spectral datatypes k-rate W name --

streaming spectral data| k-rate f name of name

types

string variables i-time and optionally k-|S name gS name
rate

vector variables k-rate t name

Where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring to a score
pfield or sequence number, and name is a string of letters, the underscore character, and/or digits with
local or global meaning. As might be apparent, score parameters are local i-rate variables whose values
are copied from the invoking score statement just prior to theinit pass through an instrument, while MIDI
controllers are variables which can be updated asynchronously from aMIDI file or MIDI device.

Variable Initialization

Opcodes that let oneinitialize variables are:
e assign
o divz
* init
* tival
Predefined Math Constant Macros

Csound defines several important math constants as Macros. Y ou can see the full list here.

Expressions

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper rate.
For instance, if thetermswithin asub-expression al change at the control rate or slower, the sub-expression
will be evaluated only at the control rate; that result might then be used in an audio-rate evaluation. For
example, in

55

Syntax of the Orchestra

k1 + abs(int(p5) + frac(p5) * 100/12 + sqrt(kl))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the remainder
of the expression evaluated every k-period. The whole might occur in a unit generator argument position,
or be part of an assignment statement.

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These
areoptionally full pathnames, whose target directory isfully specified. When not afull path, filenames are
sought in several directories in order, depending on their type and on the setting of certain environment
variables. Thelatter are optional, but they can serve to partition and organize the directories so that source
files can be shared rather than duplicated in several user directories. The environment variables can define
directories for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include files for
orchestra and score files INCDIR.

In Csound version 5.00 and later, these environment variables can specify multiple directories as a ; sep-
arated list. If afileisfound in more than one location, the first one has the highest precedence.

The search order is:
1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.

2. Soundfilesfor reading are sought in the current directory. If default paths are not disabled, fileswill next
be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SSDIR and then SFDIR.

3. Analysis control files for reading are sought in the current directory. If default paths are not disabled,
fileswill next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SADIR.

4. MIDI files for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in MFDIR, SSDIR
and SFDIR.

5. Files of code to be included in orchestra and score files (with #include) are sought first in the current
directory, then inthe samedirectory asthe orchestraor scorefile (as appropriate), then finally INCDIR.

Nomenclature

Throughout this document, opcodes are indicated in and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs),
and the result is usually denoted by the letter r. Both are preceded by a type qualifier i, k, a, or x (e.g.
kamp, iphs, ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control
(scalar) and audio (vector) values, modified and referenced continuously throughout performance (i.e. at
every control period while the instrument is active). Arguments are used at the prefix-listed times; results
are created at their listed times, then remain available for use as inputs elsewhere. With few exceptions,
argument rates may not exceed the rate of the result. The validity of inputsis defined by the following:

» arguments with prefix i must be valid at init time;
» arguments with prefix k can be either control or init values (which remain valid);
 arguments with prefix a must be vector inputs;

 arguments with prefix x may be either vector or scalar (the compiler will distinguish).

56

Syntax of the Orchestra

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most
opcodes (such as and) can be used in more than one mode, which one being determined by the
prefix of the result symbol.

Thoughout this manual, the term "opcode” is used to indicate acommand that usually produces an &, k-,
or i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as"+"
or"sin(x)" or,"(a>=b?c: d)" arecaled "operators."

Macros

Orchestra macros work like C preprocessor macros, and replace the content of the macro in the orchestra
before it is compiled. The opcodes one can use to create, call, or undefine orchestra macros are:

* #define

* $NAME

o #Hifdef

o #ifndef

 #end

o #else

* #include

o #undef

Orchestra macros can also be defined using the command line flag --omacro:.

More information and examples on the usage of orchestra macros can be found in the entry for #define.

These opcodes refer to orchestra macros; for score macros, refer to Score Macros.

Named Instruments

As arecent addition to the orchestra syntax, instruments can be defined with string names. Such named
instruments are callable from the score, and are supported by a number of opcodes.

Syntax

A named instrument is declared as shown below:

instr Name[, Name2[, Nane3[, ...]]]
[...]

endin

A single instrument can have any number of names, and any of these names can be used to call theinstru-
ment. Additionally, it is possible to use numbers as name, denoting a standard numbered instrument, so
the following declaration is also valid:

57

Syntax of the Orchestra

instr 100, Nanel, 99, Nane2, 1, 2, 3

Aninstrument namemay consist of any number of |etters, digits, and theunderscore (_) character, however,
thefirst character must not beadigit. Optionally, theinstrument name may be prefixed withthe'+' character
(see below), for example:

instr +Reverb

For al instrument names, a number is automatically assigned (note: if the message level (-m) is not zero,
these numbers are printed to the console during orchestra compilation), following these rules:

* any unused instrument numbers are taken up in ascending order, starting from 1

* the numbers are assigned in the order of instrument name definition, so named instruments that are
defined later will always have a higher number (except if the '+' modifier is used)

« if the instrument name was prefixed with '+, the assigned number will be higher than that of any of
the (both numbered and named) other instruments without '+'. If there are multiple '+' instruments, the
numbering of these will follow the order of definition, according to the aboverule.

Using '+ ismainly useful for global output or effect instruments, that must be performed after the other
instruments.

An example for instrument numbers:
instr 1, 2
endi n

instr Instrl
endin

instr +Effectl, Instr2
endin

instr 100, Instr3, +Effect2, Instr4, 5
endin

In this example, the instrument numbers are assigned as follows:

Instrl: 3
Effectl: 101
Instr2: 4
Instr3:. 6
Effect2: 102
Instr4. 7

Using Named Instruments

Named instruments can be called by using the name in double quotes as the instrument number (note: the
'+' character should be omitted). Currently (as of Csound 4.22.4), named instruments are supported by:

 'i"and'q' score events
Notes

1. in score files, unmatched quotes, and spaces or other invalid characters in the strings
should be avoided, otherwise (at |east with current version) unpredictabl e behavior may

58

Syntax of the Orchestra

occur (this problem does not exist for -L line events). However, there is checking for
undefined instruments, and in such cases, the event is simply ignored with awarning.

2. Stand-alone utilities (score sort and extract) do not support named instruments. It isstill
possible to sort such scores by using the -t0 option of the main Csound executable)

* real-timeline events (-L)
* event, schedkwhen, subinstr, and subinstrinit opcodes
* massign, pgmassign, prealloc, and mute opcodes

Additionaly, there is a new opcode (nstrnum) that returns the number of a named instrument:

insno nstrnum "nane"

With the above example, nstrnum "Effect1" would return 101. If an instrument with the specified name
does not exist, an init error occurs, and -1 is returned.

Example
; ---- orchestra ----
Sr = 44100
ksnps = 10
nchnls = 1
preal | oc "Si neWave", 20
preall oc "M DI Si neWave", 20
massign 1, "M DI Si neWave"
gaQut Send init 0
instr +Qutputlnstr
out gaQut Send
cl ear gaQut Send
endi n
instr SineWave
al oscils p4, p5, 0
vincr gaQut Send, al
endi n
instr M D Si neWave
i amp vel oc
i note not num
icps = cpsoct(inote / 12 + 3)
al oscils ianp * 100, icps, O
vi ncr gaQut Send, al
endi n
; ---- score ----

"Si neWave" 0 2 12000 440

59

Syntax of the Orchestra

"Qutputinstr" 0 3

Author

Istvan Varga

2002

User Defined Opcodes (UDO)

Csound allows the definition of opcodes inside the orchestra header using the opcodes opcode and endop.
The defined opcode may run with a different number of control samples (ksmps) using setksmps.

To connect inputs and outputs for the UDO, use xin and xout.

An UDO looks like this:

opcode Lowpass, a, akk

setksmps 1 ; need sr=kr
ain, kal, ka2 xin ; read input paraneters
aout init O ; initialize output
aout = ain*kal + aout*ka2 ; sinple tone-like filter
xout aout ; write output
endop

This UDO called Lowpass takes 3 inputs (the first is a-rate, and the next two are k-rate), and delivers
1 arate output. Notice the use of xin to receive inputs and xout to deliver outputs. Also note the use of
setksmps, which is needed for the filter to work properly.

To use this UDO within an instrument, you would do something like:

afiltered Lowpass asource, kvaluel, kval ue2
See the entry for opcode for detailed information on UDO definition.

You can find many ready made UDO's (or contribute your own) at Csounds.com [http://www.csound-
s.com/]'s User Defined Opcode Database [http://www.csounds.com/udo/].

K-Rate Vectors

Csound allows the declaration and deployment of one-dimensional vectors or tables. They arelocal to an
instrument, and need to be declared for size (with the init opcode. Individual elements are read as part of
any expression with square brackets to give an index at k-rate. Individual elements can be assigned, and
there are a number of opcodes to query and modify tables.

Function Syntax in Csound6

Csound 6 has introduced a new alternative syntax for orchestra code. This is initially an experimental
feature, which has some limitations, as explained below. It will also allow the introduction of some non-
backwards-compatible language features.

60

http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/udo/
http://www.csounds.com/udo/

Syntax of the Orchestra

Overview

The main aspect of the new syntax isthat some opcodes can be called as functions, and inlined in orchestra
code. The general form of thisis the expression:

var* = op(exprlist*)

where * indicates optional, var is a single variable in one of Csound6 types, and exprlist is a comma
separated list of expressions (or asingleexpression or variable). These expressions can be placed anywhere
inside instrument or opcode blocks. I-time operations can aso be placed outside instrument blocks. The
functional syntax can be intermixed with standard Csound code.

Here are some examples of these expressions:

al = oscil(p4,p5)
out(vco2(p4*linen(1,0.1,p3,0.1),p5)
outs(oscili(in(),p5), in())

Limitations

The main limitation is that only opcodes with single outputs (or no outputs) are alowed. In addition,
opcodes with multiple optional outputswill not be parsed successfully in thisform. An aternativeto allow
for these is to wrap them in user-defined opcodes, or just to intermix standard Csound syntax with this
new style.

To resolve opcode ambiguities, we have introduced type annotations, in the form of op:type(exprlist). For
instance the code:

al = oscili(oscili:k(p4,p5), 440)

will choose a control-rate opcode to modulate the amplitude of the audio carrier, rather than an audio rate
one. There will be cases where the type annotation will be required, when the input arguments cannot be
used to determine the correct type of opcode to be applied.

61

The Standard Numeric Score

The score section contains events that instatiate instruments from the orchestra. There are various score
statements that enable complex score building within the csound language.

Currently, the maximum length of the score depends on the platform's architecture; on a 32bit system tis
is 2311 control periods; so for example, with kr=1500, you can run a score for amaximum of about 16.5
days before problems occur due to overflowing signed 32-bit integer variables. On a 64bit machine the
same condition would be just about 9 billion years. The input token 'z' is read as a number with the value
of approximately 25367 years.

Note also that when using single precision floats (i.e. the 'f' installers rather than the 'd' ones), the accuracy
of timing becomes worse after performing for along time.

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s statement. Be-
fore being read by the orchestra, a score is preprocessed one section at a time. Each section is normally
processed by 3 routines: Carry, Tempo, and Sort.

Carry

Within a group of consecutive i statements whose p1 whole numbers correspond, any pfield left empty
will take its value from the same pfield of the preceding statement. An empty pfield can be denoted by a
single point (.) delimited by spaces. No point isrequired after the last nonempty pfield. The output of Carry
preprocessing will show the carried values explicitly. The Carry Feature is not affected by intervening
comments or blank lines; it is turned off only by a non- i statement or by an i statement with unlike p1
whole number.

Three additional features are available for p2 alone: +, *+x, and *-x. The symbol + in p2 will be given
the value of p2 + p3 from the preceding i statement. This enables note action times to be automatically
determined from the sum of preceding durations. The + symbol can itself be carried. It is lega only in
p2. E.g.: the statements

1 0 .5 100
+
will result in
1 0 .5 100
1 .5 .5 100
1 1 .5 100

The symbols *+x and "-x determine the current p2 by adding or subtracting, respectively, the value of x
from the preceding p2. These may be used in p2 only and are not carried like the + symbol. Note also that
there should be no spaces following the #, the +, or the - parts of these symbols -- the number must come
directly after asin ~+2.3. If the example above had been

1 0 .5 100
/\+1
/\+1

62

The Standard Numeric Score

the result would instead be

1 0 .5 100
1 1 .5 100
1 2 .5 100

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input
typing and will simplify later changes.

There can sometimes be circumstances where you do not want "missing" pfields after the last one entered
to be implicitly carried. An example would be an instrument that is designed to take a variable number
of pfields. Beginning with Csound 5.08, you can prevent the implicit carrying of pfields at the end of an
i statement by using the symbol ! (called the "no-carry symbol"). The ! must appear at the end of an i
statement and it cannot be used in pl, p2, or p3, since these pfields are required. Here is an example:

1 0 .5 100

This score would be interpreted as

100
100
; no p4

5
.5
.5

5 ; only pl to p3 are carried here

[E Y

1.5

An dternative to using ! is to switch automatic carrying off apart from p1, p2 and p3. This can be done
with the score opcode statement "C 0", and can be restored with "C 1".

Tempo

Sort

This operation time warps a score section according to the information in at statement. The tempo oper-
ation converts p2 (and, for i statements, p3) from original beatsinto real seconds, since those are the units
required by the orchestra. After time warping, score files will be seen to have orchestra-readable format
demonstrated by the following:

pl p2beats p2seconds p3beats p3seconds p4 p5

This routine sorts al action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted
into ascending pl value order. If they also have the same pl value, they will be sorted into ascending p3
value order. Score sorting is done section by section (see s statement). Automatic sorting impliesthat score
statements may appear in any order within a section.

Note

Theoperations Carry, Tempo and Sort are combined in a3-phase single passover ascorefile,
to produce anew filein orchestra-readable format (see the Tempo example). Processing can

63

The Standard Numeric Score

beinvoked either explicitly by the Scsort command, or implicitly by Csound which processes
the score before calling the orchestra. Source-format files and orchestra-readable files are
both in ASCII character form, and may be either perused or further modified by standard
text editors. User-written routines can be used to modify score files before or after the above
processes, provided the final orchestra-readable statement format is not violated. Sections
of different formats can be sequentially batched; and sections of like format can be merged
for automatic sorting.

Score Statements

The statements used in scores are:

» a- Advance score time by a specified amount

* b- Resetsthe clock

» C- Toggles carry facility

* d- Deletes aninfinite instrumet

* e- Marksthe end of the last section of the score

« f- Causes a GEN subroutine to place valuesin a stored function table

* i - Makesan instrument active at a specific time and for a certain duration
* m- Setsanamed mark in the score

* n - Repeats a section

* (- Used to quiet an instrument

* 1 - Starts arepeated section

* s- Marksthe end of asection

* t- Setsthetempo

» v- Providesfor locally variable time warping of score events

* Xx- Skip therest of the current section

* y- Set seed for random numbers, either from pl or, if omitted, the clock
» { - Beginsanon-sectional, nestable loop.

 } - Ends anon-sectional, nestable loop.

Comments are denoted by semicolon (;), double slash (//) or the character ¢ and last until anewline. Also
C-style comments /* ... */ are allowed.

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features areinterpreted
during file writeout: next-p, previous-p, and ramping.

64

The Standard Numeric Score

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previousi statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played
by this instrument. np and pp symbols are recursive and can reference other np and pp symbols which can
reference others, etc. References must eventually terminatein areal number or aramp symbol. Closed loop
references should be avoided. np and pp symbolsareillegal in pl, p2 and p3 (although they may reference
these). np and pp symbols may be Carried. np and pp references cannot cross a Section boundary. Any
forward or backward reference to a non-existent note-statement will be given the value zero.

E.g.: the statements

1 0 1 10 np4 pp5
1 1 1 20
1 1 1 30

will result in

1 0 1 10 20 O
1 1 1 20 30 20
1 2 1 30 O 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to glis-
sando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may not
be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsorted
statements, the operation that interprets these symbolsis acting on afully sorted version of the score. The
tempo operation is applied after the pp and/or np processing.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation
of atime-based ramp. Ramps are anchored at each end by the first real number found in the same pfield
of apreceding and following note played by the same instrument. E.g.: the statements

100
<
<
400
<
0

PR R R R
OBRWNRO
PR R R R

will result in

100
200
300
400
200
0

PR R RR R
OhWN RO
PR R RR R

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although they
may be referenced by these). Ramp symbols areillegal in pl, p2 and p3. Ramp symbols may be Carried.
Note, however, that while the Carry feature will propagate ramp symbols through unsorted statements, the
operation that interprets these symbolsis acting on atime-warped and fully sorted version of the score. In
fact, time-based linear interpolation is based on warped score-time, so that aramp which spans a group of
accelerating notes will remain linear with respect to strict chronological time.

65

The Standard Numeric Score

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation ramp,
similar to expon. Using the symbol ~ (atilde) will result in uniform, random distribution between the first
and last values of the ramp. Use of these functions must follow the samerules asthe linear ramp function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros.
This can can alow for simpler score writing, and provide an elementary alternative to full score genera
tion systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a simple macro. The name of the macro must begin with aletter and can consist
of any combination of |etters and numbers. Case is significant. This form is limiting, in that the variable
names are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a' b' ¢') -- defines a macro with arguments. This can be used in more complex situations.
The name of the macro must begin with aletter and can consist of any combination of |etters and numbers.
Within the replacement text, the arguments can be substituted by theform: $A. In fact, theimplementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any
choice of letters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The name
is terminated by the first character which is neither a letter nor a number. If it is necessary for the name
not to terminate with a space, a period, which will be ignored, can be used to terminate the name. The
string, SNAME., is replaced by the replacement text from the definition. The replacement text can also
include macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with
#undef NAME.

Syntax

#define NAME # repl acenment text #
#define NAME(a' b' c') # replacenent text #
SNAME.

#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend
over mutliplelines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, asthey can sometimes do strange things. They take
no notice of any meaning, so spaces are significant. Thisiswhy, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this smple macro system
isapowerful concept, but it can be abused.

66

The Standard Numeric Score

Another UseFor Macros. When writing acomplex scoreit is sometimes all too easy to forget to what
the various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #i1#
#define Whoop #i2#

$Flute. 0 10 4000 440
$Whoop. 5 1

Examples

Example 1. Smple Macro

A note-event has a set of p-fields which are repeated:

ine ARGS # 1.01 2.33 138#
8.00 1000 $ARGS
8.01 1500 $ARGS
8.02 1200 $ARGS
8.03 1000 $ARGS
Thiswill get expanded before sorting into:

00 1000 1.01 2.33 138
01 1500 1.01 2.33 138
02 1200 1.01 2.33 138
03 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a
second macro (thereisno real limit on the number of macros one can define).

#define ARGSL # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
101 8.00 1000 $ARGS1L

1 8.01 1500 $ARGS2

8.02 1200 $ARGS1

8.03 1000 $ARGS2

Example 2. Macroswith arguments

#define ARG(A) # 2.345 1.03 $A 234.9#
101 8.00 1000 $ARG 2.0)
1+ 1 8.01 1200 $ARE3.0)

which expandsto

234.9

0 00 1000 2.345 1.03 .0
+ 0 234.9

1 1 8. 2
1 1 8.01 1200 2.345 1.03 3.

Credits

Author: John ffitch
University of Bath/Codemist Ltd.

Bath, UK

67

The Standard Numeric Score

April, 1998 (New in Csound version 3.48)

Multiple File Score

Description

Using the score in more than onefile.

Syntax

#i ncl ude "fil enane"

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text
#i nclude "fil enanme"

where the character " can be replaced by any suitable character. For most uses the double quote symbol
will probably be the most convenient. The file name can include a full path.

Thistakesinput fromthe named fileuntil it ends, when input revertsto the previousinput. Thereiscurrently
alimit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer's style. It
could also be used to provide repeated sections.

#i ncl ude :sectionl:
;; Repeat that

#i ncl ude :sectionl:

Alternative methods of doing repeats, usethe r statement, m statement, and n statement.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions
when some simple evaluation would be easier. This need is increased when there are macros. To assist in

68

The Standard Numeric Score

this area the syntax of arithmetic expressions within square brackets|[] has been introduced. Expressions
built from the operations +, -, *, /, % ("modul0"), and ~ ("power of") are allowed, together with grouping
with (). Unary minus and plus are also supported. The expressions can include numbers, and naturally
macroswhosevaluesare numeric or arithmetic strings. All cal culationsare madein floating point numbers.
The usual precedence rules are followed when eval uating: expressionswithin parantheses () are evaluated
first and ~ is evaluated before *, /, and % which are evaluated before + and -.

In addition to arithmetic operations, the following bitwise logical operators are also available: & (AND),
| (OR), and # (XOR, exclusive-OR). These operators round their operands to the nearest (long) integer
before evaluating. The logical operators have the same precedence asthe *, /, and % arithmetic operators.

Finally, the tilde symbol ~ can be used in an expression wherever a number is permissible to use. Each ™
will evaluate to a random value between zero (0) and one (1).

Example

3 CNT

0 [0.3*$CNT.]
+

1
1 [($ONT. / 3) +0. 2]

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this
expands to

1 0 0.3
1 0.3 0.533333

1 0 0.6
1 0.6 0.866667

1 0 0.9
1 0.9 1.2

Thisis an extreme form, but the evaluation system can be used to ensure that repeated sections are subtly
different.

Here are some simple examples of each operator:

1 0 1 [110 + 220] ; evaluates to 330
1+ . [330 - 55] ;275

1 + [44 * 10] ;440

1 + [1100 / 2] ; 550

1 + [5~ 4] ; 625

1 + [5660 % 1000] ; 660

1 + [110 & 220] ; 76

1 + [110 | 220] ; 254

1 + [110 # 220] ; 178

1 + [~ ; random between 0-1
1 + [~* 4 + 1] ; random between 1-5
1 + [~* 95 + 5] ; random bet ween 5-100
1 + [8/ 2* 3] ;12

1 + [4+3-2+1] ,; 6

1 + [4+3*2+1] ; 11

1 0+ [(4 +3)*(2 +1)] ; 21

69

The Standard Numeric Score

1+ [2*2 &3] 4
1+ [3&2* 2] 0
1+ [4] 3* 3] 13

The @ operator

New in Csound version 3.56 are @x (next power-of-two greater than or equal to X) and @@x (next pow-
er-of-two-plus-one greater than or equal to x).

[@11] will evaluate to 16
[@11] to 17

Credits

Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK

April, 1998 (New in Csound version 3.48)
Strings in p-fields
You can pass astring as a p-field instead of a number, like this:

i 1010 "A4"

The string can be received by the instrument and further processed using the string opcodes.

Note

Currently only one p-field can contain a string (i.e. no more than one string per line is al-
lowed). Y ou can overcome this using strset and strget.

70

Front Ends

Front ends are programs that provide some form of user interface for Csound. Within these programs,
Csound is used to generate sound, and familiarity with Csound codeisrequired in order to use them. Front
endstypically add helpful features, such as syntax coloring, graphic widgets, or toolsfor algorithmic score
generation, that are not part of Csound itself. Most of these programs were created by a single person, so
some of them are not being maintained. Below isalist (certainly not complete, and perhaps not up to date)
of front ends available for Csound.

Most often, you'll want to download and install Csound itself before downloading and installing afront end.
Some front ends require particular versions of Csound, so if you plan to use afront end, it's recommended
that you verify its compatibility before installing Csound.

CsoundQt

Blue

CsoundQt isaversatile, cross-platform GUI (graphical user interface) which is bundled with the standard
Csound distribution. Created and maintained by Andres Cabrera, QuteCsound provides a multi-tabbed
editor, graphic widgets for real-time sound control, and an opcode help system that links to this manual.
At this writing (2013) CsoundQt is in active development, so the version installed in your system when
you install Csound may not be the most current. The most recent version can be found at http://qutec-
sound.sourceforge.net/.

A cross-platform composition-oriented front end written by Steven Yi in Java. The user interface provides
a timeline structured somewhat like a digital multitrack, but differs in that timelines can be embedded
within timelines (polyObjects). This allows for a compositional organization in time that many users will
find intuitive, informative, and flexible. Each instrument and score section in a blue project has its own
editing window, which makes organizing large projects easier. Blue can be downloaded at Blue Home
Page [http://csounds.com/stevenyi/blue/].

Cabbage

Cabbage is a Csound frontend that provides users with the means to devel op audio plugins and standalone
software across the three major operating systems. While Cabbage makes use of underlying plugin tech-
nologies such as Steinberg's VST SDK, ASIO, etc, Csound is used to process all incoming and outgoing
audio. Cabbage al so provides agrowing collection of GUI widgets ranging from simple sidersto automat-
able XY-pads. All GUI widgets in a Cabbage plugin can be controlled via host automation in a plugin
host, thereby providing a quick and effective means of automating Csound instrument parameters in both
commercial and non-commercial DAWSs. Cabbage can be downloaded at Cabbage Home Page [https://
github.com/cabbageaudi o/cabbage/rel eases].

WinXound

WinXound isafreeand open-source Front-End GUI Editor with syntax highlighting for CSound 6, CSoun-
dAV, CSoundAC, with Python and Lua support, devel oped by Stefano Bonetti. It runs on Microsoft Win-
dows, Apple Mac OsX and Linux. You can get it at the WinXsound Front Page [http://winxound.code-
plex.com/].

71

http://qutecsound.sourceforge.net/
http://qutecsound.sourceforge.net/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
https://github.com/cabbageaudio/cabbage/releases
https://github.com/cabbageaudio/cabbage/releases
https://github.com/cabbageaudio/cabbage/releases
http://winxound.codeplex.com/
http://winxound.codeplex.com/
http://winxound.codeplex.com/

Front Ends

Winsound

Winsound was formerly part of the main Csound tree. It is now available only as source code. Winsound
isacross-platform FLTK port of Barry Vercoe's original front-end for csound. Some partially sighted or
unsighted users report success using Winsound with text-to-speech software.

CsoundAC
Python Scripting

Y ou can use CsoundAC as a Python extension module. Y ou can do thisin a standard Python interpreter,
such as Python command line or the Idle Python GUI.

To use CsoundAC in a standard Python interpreter, import CsoundAC.

i mport CsoundAC

The CsoundAC module automatically creates an instance of CppSound named csound, which provides
an object-oriented interface to the Csound API. In a standard Python interpreter, you can load a Csound
. csd fileand perform it like this:

C:.\ Docunents and Settings\nkg>pyt hon

Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on w n32
Type "hel p*, "copyright", "credits" or "license" for nore information
>>> jnport CsoundAC

>>> csound. | oad("c:/ projects/csound5/ exanpl es/ trapped. csd")

1

>>> csound. export For Per f or mance()

1

>>> csound. perforn()

BEGAN CppSound: : perform(5, 988ee0)...

BEGAN CppSound: : conpi |l e(5, 988ee0). ..

Usi ng default | anguage

0dBFS | evel = 32767.0

Csound version 5.00 beta (float sanples) Jun 7 2004
l'ibsndfile-1.0.10pre6

orchname: tenp.orc

scor enane: tenp.sco

orch conpiler

398 lines read

instr 1
instr 2
instr 3
instr 4
instr 5
instr 6
instr 7
instr 8
instr 9
instr 10
instr 11
instr 12
instr 13
instr 98
instr 99
sorting score ...
done

Csound version 5.00 beta (float sanples) Jun 6 2004
di spl ays suppressed
0dBFS | evel = 32767.0

72

Front Ends

orch now | oaded

audi o buffered in 16384 sanpl e-frane bl ocks
SFDI R undefined. wusing current directory
witing 131072-byte bl ks of shorts to test.wav
VWAV

SECTI ON 1

ENDED CppSound: : conpil e

ftable
ftable
ftable
ftable
ftabl e
ftable
ftabl e
ftable
ftable
ftable 10

ftable 11:

ftable 12:

ftable 13

ftable 14

ftable 15

ftabl e 16:

ftable 17:

ftable 18

ftable 19:

ftable 20

ftable 21:

ftable 22:

new alloc for instr 1

B 0.000 .. 1.000 T 1.000 TT 1.000 M 32.7 0.0
new alloc for instr 1

B 1.000 .. 3.600 T 3.600 TT 3.600 M 207.6 0.1

ecxNonhAONR

B 93.940 .. 94.418 T 98.799 TT281.799 M 477.6 85
B 94.418 ..100.000 T107.172 TT290.172 M 118.9 11.
end of section 4 sect peak anps: 25950.8 26877
inactive allocs returned to freespace

end of score. overal |l anps: 32204.8 31469.6
overal |l sanples out of range: 0 0

0 errors in performance

782 131072-byte soundbl ks of shorts witten to test.wav WAV
El apsed time = 13.469000 seconds

ENDED CppSound: : perform

1

>>>

» 01O

The koch. py script shows how to use Python to do algorithmic composition for Csound. Y ou can use
Python triple-quoted string literals to hold your Csound files right in your script, and assign them to
Csound:

csound. set O chestra(sr = 44100

kr = 441

ksmps = 100

nchnls = 2

0dbfs = .1

instr 1,2,3,4,5 ; FluidSynth General M D

I'; I NITI ALI ZATI ON

; Channel, bank, and program determine the preset, that is, the actual sound

i channel = pl
i program = p6
i key = p4
ivelocity = p5 + 12

73

Front Ends

i j unk6 = p6

ijunk? = p7

; AUDI O

i status = 144,

print i program istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/ proj ects/csound5/ sanpl es/ Vi nt ageDr eansWaves-v2. sf 2", \\
i program istatus, ichannel, ikey, ivelocity, 1

outs aleft, arightendin''"')

csound. set Command(" csound --opcode-Iib=c:/projects/csound5/fluid.dlIl \\
-RwWifo ./koch.wav ./tenp.orc ./tenp.sco")

csound. export For Per f or mance()

csound. perform)

CsoundVST

CsoundV ST is a multi-function front end for Csound, based on the Csound API. CsoundV ST runs as a
stand-alone graphical user interface to Csound, and it also runs as a VST instrument or effect plugin in
VST hosts such as Cubase with the same user interface. CsoundV ST is part of the main csound source
tree, but is not included in standard distributions, due to licensing limitations of Steinberg's VST SDK.

Standalone

To run CsoundV ST as a stand-alone front end to Csound, execute CsoundV ST. When the program has
loaded, you will see a graphical user interface with arow of buttons along the top. Click on the Open...
button to load a. csd file. You can also click on the Open... button and load a.. or ¢ file, then click on the
Import... button to add a. sco file. You can edit the Csound command, the orchestrafile, or the score file
in the respective tabs of the user interface. When al is satisfactory, click on the Perform button to run
Csound. Y ou can stop a performance at any time by clicking on the Stop button.

VST Plugin

Thefollowinginstructionsare for Cubase 4.0. Y ouwould follow roughly similar proceduresin other hosts.

Use the Devices menu, Plug-1n Information dialog, VST Plug-Ins tab, VST 2.x Plug-in Paths dialog, Add
button to add your csound/ bi n directory to Cubase's plugin path. Y ou can have multiple directories sep-
arated by semicolons. Then select the CsoundV ST path and click on the Set as Shared Folder button.

Quit Cubase, and start it again.
Use the File menu, New Project dialog to create a new song.
Use the Project menu, Add Track submenu, to add anew MIDI track.

Use the pencil tool to draw a Part on the track a few measures long. Write some music in the Part using
the Event editor or the Score editor.

Use the Devices menu (or the F11 key) to open the VST Instruments dialog.
Click on one of the No VST Instrument labels, and select CsoundVST from the list that pops up.
Click on the e (for edit) button to open the CsoundVST dialog.

Onthe Settings page, check the Instrument box inthe VST Plugin group, and the Classic box in the Csound
performance mode group. Then click on the Apply button.

Click on the Open button to bring up the file selector dialog. Navigate to a directory containing a Csound
csdfilesuitablefor MIDI performance, such ascsound/ exanpl es/ CsoundVsT. csd. Click onthe OK button
to load the file. Y ou can also open and import a suitable . orc and . sco file as described above.

74

Front Ends

In any event, the command linein the Classic Csound command line text box must specify - +r t ni di =nul |
- M, and should read something like this:

csound -f -h -+rtmdi=null -M -d -n -n¥ --mdi-key-oct=4 --mdi-velocity=5 tenp.orc tenp.sco
Click onthe VST Instruments dial og's on/off button to turnit on. This should compilethe Csound orchestra.

In the Cubase Track Inspector, click on the out: Not Assigned label and select CsoundVST from the list
that pops up.

Ontheruler at the top of the Arrangement window, select the loop end point and drag it to the end of your
part, then click on the loop button to enable [ooping.

Click on the play button on the Transport bar. Y ou should hear your music played by CsoundV ST.
Try assigning your track to different channels; a different Csound instrument will perform each channel.

When you save your song, your Csound orchestra will be saved as part of the song and re-loaded when
you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments while CsoundV ST is playing. To
hear your changes, just click on the CsoundV ST Perform button to recompile the orchestra.

You can assign up to 16 channels to a single CsoundV ST plugin.

75

Building Csound

Csound has become a complex project and can involve many dependencies. Unless you are a Csound
developer or need to develop Csound plugins, you should try to use one of the precompiled distributions
from http://www.sourceforge.net/projects/csound.

Detailed and up to date information about building Csound from source can be found in the BUILD.md
[https://github.com/csound/csound/blob/devel op/BUILD.md] file in the Csound6 sources.

76

http://www.sourceforge.net/projects/csound
https://github.com/csound/csound/blob/develop/BUILD.md
https://github.com/csound/csound/blob/develop/BUILD.md

Csound Links

Csound's "home page" can be found at http://csound.github.io.
Another Csound page, maintained by Richard Boulanger, can be found at http://csounds.com.

The Csound source code is maintained by John ffitch and others at https://github.com/csound. The most
recent versions and precompiled packages for most platforms also can be downloaded here [http://source-
forge.net/project/showfiles.php?group_id=81968].

A Csound mailing list exists to discuss Csound. It is run by John ffitch and Victor Lazzarini of Maynooth
University, Ireland. To have your name put on the mailing list send a message to: listserv@heanet.ie
[mailto:listserv@listserv.heanet.i€] with body "subscribe csound™. Y ou can also subscribe to the digest (1
message per day) by sending an email to: listserv@listserv.heanet.ie [mailto:listserv@listserv.heanet.i€]
with body "subscribe csound set digest”. Posts sent to csound@listserv.heanet.ie [mailto:csound@list-
serv.eanet.i€] go to all subscribed members of the list.

Similarly, the Csound- devel mailing list exists to discuss Csound development. For more information on
this list, go to http://listserv.heanet.ie [http://listserv.heanet.ie/] and follow the link to csound-dev. Posts
sent to csound-dev@listserv.heanet.ie [mailto:csound-dev@listserv.heanet.i€] go to al subscribed mem-
bers of thelist.

Suspected bugsin the code may be entered using the bug tracking system at the github [https://github.com/
csound/csound/issues).

77

http://csound.github.io
http://csounds.com
https://github.com/csound
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:csound@listserv.eanet.ie
mailto:csound@listserv.eanet.ie
mailto:csound@listserv.eanet.ie
http://listserv.heanet.ie/
http://listserv.heanet.ie/
mailto:csound-dev@listserv.heanet.ie
mailto:csound-dev@listserv.heanet.ie
https://github.com/csound/csound/issues
https://github.com/csound/csound/issues
https://github.com/csound/csound/issues

Part Il. Opcodes Overview

Table of Contents

SIGNAI GENEIAIONS ... ettt et ettt e e ettt e ittt e et e et e et e nnaas 82
Additive SyntheSiS/RESYNINESIS ... oo e 82
BaSiC OSCIIAIOIS ...ttt e e et e et e e e et e e e e e eeee 82
Dynamic SPectrum OSCIHIALONScoouueiiiiii e 82
FIM SYNENESIS .ttt 83
Granular SYNENESISu.iei e e 83
Hyper Vectorial SYNthESISiiiiii e 84
Linear and EXPONENtial GENEIEIONScuuuueiertieeeiii e et e et e e e e e e e e eeeaaaes 84
ENVEIOPE GENEIEIONSeetti ettt ettt sttt s ettt et e e e e e e e enaa e e ennes 85
ModelS @and EMUIBLTONSuiiiiii et e et e e et e e e e e eees 85
PRIGSONS ... et e et et et e e e e e aeae 86
RaNAOM (NOISE) GENEIBIOIS cieeei ettt ettt ettt ettt e et eeena s 87
SaAMPIE PLAYDACK ... 88

SOUNTFONES ...ttt et e et e et e e e 88
SCANNEA SYNENESISee ettt e et e et e e ent e eees 90
TADIE ACCESS ...ttt et eaaas 91
Wave Tamain SYNTNESISoooui e 92
Waveguide PhysiCal MOOEIINGuiiiiiieiiii e 92

Signal INPUE AN OULPULceeeenei ettt ettt e et e et e e e eaa s 93
File INPUE 8N OULPULeeeeie e ettt e e e e e eaeens 93
SIGNAL TNPUL L. 93
SIGNEAI OULPUL ...ttt ettt ettt ettt et e a et e n e e enaas 93
SOFIWEIE BUS ...ttt ettt et 94
PriNting and DiSPlayccoeeunieiiii e 94
SOUNA FilE QUENTES ...ttt e et e et e e e e et e e e e eaneaes 94

SIGNAE MOGITTEIS ... ettt e e e e 96
Amplitude Modifiers and DYNamiC PrOCESSING ... cevvrureeerineeeeiiieeeeii e eeeniaeeeeni e eennanns 96
Convolution and MOFPRINGceeeee et e s 96
(D= - PP PR TS UPPTN 96
Panning and SPatialiZationccoeuuiiiiiiii e 97
REVEIDEIBIION ... 98
SAMPIE LEVEL OPEIEIOIS ... ettt ettt et e e e e eaenns 99
SIGNAL LIMITEIS ettt ettt ettt aaans 99
SPECIAI EFFECLS ..o 99
SEANAAIT FIITEIS ...ttt et 100
SPECIAIIZEA FIITEIS ...t 102
WEVEGUITES ...ttt ettt ettt e e ettt e e et et e e et et e e e eeanaeeees 102
Waveshaping and Phase DiStOrtioNeieeueneriiiieeeii e e e e eeees 102

INSEIUMENE CONEFOL ...ttt e et e et e e et et e e e eete e eeenbaaaeeees 104
ClIOCK CONIOL ...ttt ettt ettt e e et e et et e e e e rb e e e entaeeeees 104
CoNAItiONAl VBIUBS ...t e e 104
Duration Control SEEIEMENTSuiiiiiee e 104
FLTK Widgets and GUI CONIOIEISccuuuiiiiiiieeiiii et 104

FLTK CONMAINEIS ..ttt ettt et e et e et e e et eeeeaa s 107

FLTK VBIUBLOTS ...ttt ettt e e e e e e enaes 107

Other FLTK WIOGELS ...covviieiiiii ettt e e e e e e e 108

Modifying FLTK Widget APPEAIANCEcceevuueiiiiiieieeiie et 108

General FLTK Widget-related OPCOTEScccvuuiiiiiiiieiiii e 109
INSETUMENE TNVOCELION ...ttt et ettt e et e e et e e e e e eeees 109
Program FIOW CONIOLoouuuiiiiii ettt e eer e e eeaans 110
Real-time Performance CONTIOluiiiiiiiieiii et 111

79

Opcodes Overview

Initilization and REINIIAIIZAIIONcoovviieiii e 111
S = a1 T (o = 1o g1 (o) PN 112
RS = o PSP 113
SUB-INSEFUMENt COMEIOI ...eeieee e e e e et e e eaa s 113
0L = o 1 P 113
FUNCEION Tahle CONLIOL ...ciieeieee e e e et e e e et e e e e aae s 115
TADIE QUEIES .. ettt e e e e e e e e e e 115
RS o AT) (SN @)1= - 1o 115
Table Reading with DynamiC SElECHIONcccvuiiiiii e e 116
MathematiCal OPEIELIONSuuiiei it e et e e e e e e e e e e e e e et e e et eeat e e et e e st eeaneeanaees 117
AMPLITUAE CONVEITEIS .. .ouiiii e e e e e e e e et e e et e e eanas 117
Arithmetic and LOGIC OPEratioNSccvuuiiii i et e e e e e e e e e e e e aaeees 117
Comparators and ACCUMUIGLOTSccuuieiiieeii e e ee e e e e e e e e e e e eaa e eaes 117
Mathematical FUNCHIONSiiiiii e e s 118
Opcode Equivalents of FUNCLIONSccouiiiiiiciii e e e 118
RANAOM FUNCLIONS ..ottt e et e e et e e e e eae s 118
TrIgONOMELIIC FUNCHIONS .. coviiiiiieii e e e e e e e e e e e e et e e e e e anaeeaen 119
Linear AlQera OPCOUESciviieiii e e e e e e e e e e aes 120
F N 4 = YA O o oo o = 128
e N e 1Y = 4 1= £ PP 135
L1 1o PP 135
LI 10110 O oo o L= 135
REA-TIME MIDI SUPPOITieii et e e e e e e e e e e et e e e e et e e et e e et e e e aa e eaneeaens 136
Virtual MIDI KeYBoardccouuiiiiiiiii e e e 137
] T oo PP 140
MIDI MESSAGE OULPUL ...uetieitei ittt et et e e e e e e e e e e es 140
Generic INPUE and OULPULovvniii e e e e e e e e e e e et e e e e aanas 141
10010177 1 (< = TP 141
EVENE EXLENAEIS ...ttt e et e et 141
NOtE-ON/NOLE-OFff OULPULuvtiiiiieii e e e e e e e et e e et e eea e eees 141
MIDI/Score Interoperability OPCOUESuivviiiiiii e e 142
System REAtiME MESSAGESuuiiie et e e e e e e e e e e e e e e e e aanas 143
SHAEN BaANKS ... 143
S o Lc o = 0o = o [144
Short-time Fourier Transform (STFT) ReSyNtheSiScovviiiiiiii e, 144
Linear Predictive Coding (LPC) ReSYNhESIS ... ccvviiiiiiiie e 144
Non-standard SPectral PrOCESSINGccuuiiiieeiiii e e e e e 145
Tools for Real-time Spectral Processing (PVS OPCOAES)cvvvueviieiiiiieiiieeeiieeeieeeeieeaies 145
ATS SPECHrAl PrOCESSING ...uuiiiiiiiiiieeie et e e e e e e e e e e e e et e e eanaeeanaes 146
[0 FY O o oo o (PN 147
Array-based SPectral OPCOTEScivviiiiii e 150
S 1 01 152
String Manipulation OPCOUESccvuiiiiieiie e e e e e e e eeas 153
String CoNVErSION OPCOUESiiieeiiieii e et e e e e e e e e e e e e e e e e e et e e et e eanaas 154
V2= v (0 = @ ool o L= 155
Tables Of VECIOIS OPEraIOrSu.iiiiii et e e e e e e e e et e e e eaaas 155
Operations Between a Vectorial and a Scalar Signalccoovvieiiiiiiiiiiiin e, 155
Operations Between two Vectorial SIgnalSccuiiiiiiiiiiiciii e 156
Vectorial ENVEIOPE GENEIAIOISuuiiiiiiii e et e e e e e e e e e e e e e eaans 156
Limiting and wrapping of vectorial control Signalscc.coovviiiiiiiieiiii e 157
Vectorial Control-rate Delay Pathsco.uiiiiiiiiiiii e 157
Vectorial Random Signal GENEratOrScvvuiiiiieiieee e e e e e e e e e e e e e eaneens 157
ZaAK PaCN SYSLEIM ...t 158
L T o T 01 1 o 159

80

Opcodes Overview

DSSl and LADSPA fOr CSOUNGuuiiiiiiieeiiiis e et e et e e e e e e eae e e eenanns 159
VS I o g = 1o o [PPSR 159
(@S O 0o NN = 1o PSPPSR 161
PN o = (o a T T QO o oo o = 161
1 PR 161
[N T= Ao PP 162
R 11101 (= I @] 0 w0 o L=< TP 162
Dt G @0 o o L= R 163
Signal FIOW Graph OPCOAEScvvuiiiiii et e e e e e e e e e e e et e e et e e e e e saaees 164
= o o T o oo o == 167
[T IO o oo o =P 170
Y aT0 g T @ 0o o L= 175
g1 [0 ot [o PSPPI 175
(O o g1 Y 1 - O 175
IMAage ProCESSING OPCOUESu.ivteeiti ettt ettt et e et e e et e e et e e et eeat e e et e e et e esta e eaneeataeennaaennaes 177
Y I S oo 1= 178
MiISCEIlANEOUS OPCOUESieiiiiiie i e e e e e e e e e e e e e e e et e e et e e e e eeannes 180

81

Signal Generators
Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are;
* adsyn

» adsynt

* adsynt2

* hsboscil

See the section Spectral processing for more information and further additive/resynthesis opcodes.

Basic Oscillators

The basic oscillator opcodes are: (note that opcodes that end with 'i* implement linear interpolation and
those that end with ‘3" implement cubic interpolation)

* Ogcillator Banks: oschnk

» Simpletable oscillators: oscil, oscil3 and oscili.

» Simple, fast sine oscilator: oscils

* Precision oscilators: poscil and poscil 3.

» Moreflexible oscillators: oscilikt, osciliktp, oscilikts and osciln (also called oscilx).

Oscillators can also be constructed from generic table read opcodes. See the Table Read/Write operations
section.

LFOs

* |fo
e vibr
* vibrato

See the section Table access for other table reading opcodes that can be used as oscillators. Also see the
section Dynamic spectrum Oscillators.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are:
» Harmonic spectra: buzz and gbuzz

 Impulse generator: mpulse

82

Signal Generators

» Band limited oscillators (analog modelled): vco and vco2

The following opcodes can be used to generate band-limited waveforms for use with vco2 and other os-
cillators:

* vco2init
» vco2ft

* vco2ift

FM Synthesis

The FM synthesis opcodes are;
* foscil
» foscili

* crossfm, crossfmi, crosspm, crosspmi, crossfmpm, and crossfmpmi.

FM instrument models

+ fmb3
o fmbell
o fmmetal
 fmpercfl
 fmrhode
» fmvoice

e fmwurlie

Granular Synthesis

The granular synthesis opcodes are:
 diskgrain

o fof

 fof2

» fog

e grain

e grain2

e grain3

e granule

83

Signal Generators

* partikkel
* partikkelsync
» sndwarp
» sndwarpst
* syncgrain
 syncloop

e vosSim

Hyper Vectorial Synthesis

* vphaseseg
* hvsl
* hvs2

* hvs3

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are:
* expon

* expcurve
* expseg

* expsega
° expsegr
» gaindider
* jspline

* line

* linseg

* linsegr

* logcurve
* loopseg
* loopsegp
* |pshold

* |psholdp

Signal Generators

e rspline
» scale
* transeg
e bpf

¢ linlin

» Xxyscale

Envelope Generators

The following envel ope generators are available;
o adsr

o madsr
o mxadsr
* Xadsr
* linen
* linenr
* envipx
o envipxr
* lineto
* tlineto

Consult the Linear and exponential generators section for additional methods to create envel opes.

Models and Emulations

The following opcodes model or emulate the sounds of other instruments (some based on the STK toolkit
by Perry Cook):

* bamboo
» barmodel
+ cabasa
 crunch
 dripwater
 gogobel

e guiro

85

Signal Generators

* mandol

* marimba

* moog

 sandpaper

* sekere

* shaker

* deighbells

o dtix

* tambourine

* vibes

* voice

Also, see the STK Opcodes section for information on the STK opcodes.
Other models and emulations
* lorenz

» planet

* prepiano

» Fractal Number (Mandelbrot set) generator: mandel
 chuap

* gendy

e gendyc

* gendyx

A section on physical modeling using the waveguide principles can be found here: Waveguide Physical
Modeling

Phasors

The opcodes that generate a moving phase value:
* ephasor

 phasor

* phasorbnk

* syncphasor

 phasor

86

Signal Generators

These opcodes are useful in combination with the Table access opcodes.

Random (Noise) Generators

Opcodes that generate random numbers are:
* betarnd
» bexprnd
 cauchy
* cuserrnd
* duserrnd
* dust

* dust2

e exprand
* fractalnoise
* gauss

* gausstrig
* linrand
* noise
 pcauchy
¢ pinkish
* pinker

* poisson
e rand

+ randh

* randi

* rnd31

* random
* randomh
* randomi
e trirand
* unirand

e urd

87

Signal Generators

* weibull
o jitter

o jitter2

* trandom

See seed which setsthe global seed valuefor all x-class noise generators, aswell as other opcodesthat use
arandom call, such as grain. rand, randh, randi, rnd(x) and birnd(x) are not affected by seed.

See also functions which generate random numbers in the section Random Functions.

Sample Playback

Opcodes that implement sample playback and looping are:
* bbcutm

* bbcuts

* flooper

« flooper2
* loscil

* loscil3

* loscilx

* Iphasor

* |poscil

* |poscil3
* |poscila
* |poscilsa
* |poscilsa2
 sndloop
* waveset

See also the Signal Input section for other ways to input sound.

Soundfonts

Fluid Opcodes

The fluid family of opcodes wraps Peter Hannape's SoundFont 2 player, FluidSynth: fluidEngine for in-
stantiating a FluidSynth engine, fluidSetinterpMethod for setting interpolation method for a channel in a
FluidSynth engine, fluidLoad for loading SoundFonts, fluidProgramSelect for assigning presets from a

88

Signal Generators

SoundFont to a FluidSynth engine's MIDI channel, fluidNote for playing a note on a FluidSynth engine's
MIDI channel, fluidCCi for sending a controller message at i-time to a FluidSynth engine's MIDI channel,
fluidCCk for sending a controller message at k-rate to a FluidSynth engine's MIDI channdl. fluidControl
for playing and controlling loaded Soundfonts (using 'raw' MIDI messages), fluidOut for receiving audio
from asingle FluidSynth engine, and fluidAllOut for receiving audio from all FluidSynth engines.

e fluidAllOut

fluidCCi

o fluidCCk

* fluidControl

« fluidEngine

* fluidLoad

+ fluidNote

o fluidOut

« fluidProgramSelect

o fluidSetlnterpMethod

"Old" Soundfont opcodes

These opcodes can a so use soundfonts to generate sound. sfplay etc. were created for one purpose -- to use
the samplesin SoundFonts. The fluid opcodes were created for another purpose -- to use SoundFonts more
or less the way they were designed to be used, i.e. using keyboard mappings, layers, internal processing,
etc.

o dfilist

o dfinstr

o Sfinstr3

* dfinstr3m

* sfinstrm

* sfload

* sfpassign

» sfplay

» sfplay3

* sfplay3m

o sfplaym

* sflooper

o Sfplist

89

Signal Generators

o dfpreset

Scanned Synthesis

Scanned synthesis is a variant of physical modeling, where a network of masses connected by springs
is used to generate a dynamic waveform. The opcode scanu defines the mass/spring network and sets it
in motion. The opcode scans follows a predefined path (trajectory) around the network and outputs the
detected waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio,
or as controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentially, this offers the possi-
bility of reconnecting the massesin different orders, causing the signal to propagate quite differently. They
do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the effect of
“molding” this surfaceinto aradically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the fol-
lowing grid describing the possible connections:

1 2 3 4

NEFIENE

Whenever two masses are connected, the point they defineis 1. If two masses are not connected, then
the point they defineis 0. For example, aunidirectional string has the following connections: (1,2), (2,3),
(3,4). If itisbidirectional, it also has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix appears:

1 2 3 4
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

The above table format of the connection matrix is for conceptual convenience only. The actual values
shown in te table are obtained by scans from an ASCI| file using GEN23. The actual ASCII fileis created
from the table model row by row. Therefore the ASCI| file for the example table shown above becomes:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use
many more masses than four, so their matrices will be much larger and more complex. See the example
in the scans documentation.

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, centering,
and damping can cause the system to “blow up” and the most interesting sounds to emerge from your
loudspeakers!

90

Signal Generators

The supplement to this manual contains atutorial on scanned synthesis. The tutorial, examples, and other
information on scanned synthesisis avail able from the Scanned Synthesis page at cSounds.com.

Scanned synthesis devel oped by Bill Verplank, Max Mathews and Rob Shaw at Interval Research between
1998 and 2000.

Opcodes that implement scanned synthesis are:
* scanhammer

* scans

* scantable

* scanu

* Xscanmap

* Xscans

* Xscansmap

* XScanu

Table Access

The opcodes that access tables are:
* oscill
* oscilli
» osciln
» oscilx
* table
* table3
* tablei

Opcodes ending in ‘i implement linear interpolation and opcodes ending in '3' implement cubic interpo-
lation.

The following opcodes implement fast table reading/writing without boundary checks:
* tab

o tab i

* tabw

o tabw i

See the sections Table Queries, Read/Write Operationsand Table Reading with Dynamic Selection for
other table operations.

91

Signal Generators

Note

Although tables with a size which is not a power of two can be created using anegative size
(seef score statement), some opcodes will not accept them.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesisiswterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are:
* pluck
 repluck

» wgbow

» wgbowedbar
e wgbrass

* wgclar

* wgflute

« wgpluck

» wgpluck2

* wguidel

e wguide2

92

Signal Input and Output
File Input and Output

The opcodes for file input and output are:

* File open/close: fiopen and ficlose.

File output: dumpk, dumpk2, dumpk3, dumpk4, fout, fouti, foutir foutk and hdfSwrite

Fileinput: readk, readk2, readk3, readk4, fin, fini and fink

Utilities for use with the fout opcodes: clear, vincr

 Printing to afile: fprints and fprintks

Signal Input

The opcodes that receive audio signals are:

» Synchronousinput: in, in32, inch, inh, ino, ing, inrg, ins and inx
* File streaming: diskin, diskin2 soundin and hdf5read

» User defined channel input: invalue

* Streaming input: soundin

» Websocket input: websocket

* Direct to zak input: inz

See the section Software Bus for input and output through the API.

The mp3in alows reading of mp3 files, which are currently not supported by ordinary reading methods
inside Csound.

Signal Output

The opcodes that write audio signals are:

 Synchronous output; out, out32, outc, outch, outh, outo, outrg, outg, outql, outg2, outg3, outg4, out-
s,outsl, outs2 outx and hdfSwrite

* Streaming output: soundout and soundouts
» User defined channel output: outvalue

« Direct from zak output: outz

» Websocket output: websocket

The opcode monitor can be used for monitoring the complete output of csound (the output spout frame).

93

Signal Input and Output

See the section Software Bus for input and output through the API.

Software Bus

Csound implements a software bus for internal routing or routing to external software calling the Csound
API.

The opcodes to use the software bus are:
e chn k

e chn a

e chn_S

* chnclear

* chnexport

o chnmix

e chnparams

Printing and Display
Opcodes for printing and displaying values are:
o dispfft
« display
« flashtxt
e print
o printf
o printf_i
o printk
e printk2
* printks

e prints

Sound File Queries

The opcodes that query information about files are:
« filelen
« filenchnls

. filepeak

94

Signal Input and Output

o filesr

* filevalid

95

Signal Modifiers

Amplitude Modifiers and Dynamic processing

The opcodes that modify amplitude are:
* balance

¢ compress

» clip

* dam

e gain

The opcode Odbfs facilitates the use of amplitude by removing the need to use of explicit sample values.

Convolution and Morphing

The opcodes that convolve and morph signals are:
» convolve also called convie

* Cross2

* dconv

* ftconv

o ftmorf

* pconvolve

Delay
Fixed delays

» delay

» delayl

 delayk
Delay Lines

. delayr

. delayw

 deltap

96

Signal Modifiers

 deltap3
* deltapi
 deltapn
 deltapx

* deltapxw

Variable delays
e vdelay
* vdelay3
* vdelayx
» vdelayxs
 vdelayxq
* vdelayxw
* vdelayxwq

» vdelayxws

Multitap delays

o multitap
Panning and Spatialization

Amplitude spatialization

* locsend
* locsig
* pan

e pan2
* space
e spdist

* gpsend

3D spatialization with simulation of room acoustics

e spat3d

97

Signal Modifiers

* spat3di

* spat3dt

Vector Base Amplitude Panning

» vbapl6

 vbapl6move

* vbap4

* vbapdmove

» vbap8

« vbap8move

« vbaplsinit

* vbapz

 vbapzmove

Binaural spatialization

e hrtfer
e hrtfmove
e hrtfmove2

o hrtfstat

Ambisonics

» bformdec

* bformenc

Reverberation

The opcodes one can use for reverberation are:
» alpass

* babo

» comb

* freeverb

* nestedap

e nreverb (also called reverb2)

98

Signal Modifiers

reverb
reverbsc
valpass

vcomb

Sample Level Operators

The opcodes one may use to modify signals are:

a(k)
denorm
diff
downsamp
fold

i(k)

integ
interp

k(i)

ntrpol
samphold
upsamp
vaget

vaset

Signal Limiters

Opcodes that can be used to limit signals are:

limit
mirror

wrap

Special Effects

Opcodes that generate special effects are:

distort

99

Signal Modifiers

distortl
exciter
flanger
harmon
phaserl

phaser2

Standard Filters

Resonant Low-pass filters

areson
lowpass2
lowres
lowresx
Ipf18
moogvcf
moogladder
mvclpfl
mvclpf2
mvclpf3
mvclpfd
reson
resonr
resonx
resony
resonz
rezy
statevar
svfilter
tbvcf

viowres

100

Signal Modifiers

barez

Standard filters

Hi-pass filters: atone, atonex, mvchpf
Low-pass filters: tone, tonex
Biquad filters: biquad and biquada.

Butterworth filters: butterbp, butterbr, butterhp, butterlp (which are also called butbp, butbr, buthp,
butlp)

Generadl filters; clfilt

Zero-delay Feedback Filters (Virtual Analog)

zdf 1pole

zdf _1pole mode
zdf_2pole
zdf_2pole_mode
zdf _ladder
diode_|ladder
K35_hpf

K35_Ipf

Control signal filters

aresonk
atonek
lineto
port
portk
resonk
resonxk
tlineto
tonek
sc lag

sc_lagud

101

Signal Modifiers

Specialized Filters
High pass filters

» dcblock

* dcblock2
Parametric EQ

* pareq

* rbjeq

« eqfil
Other filters

* nifilt

* filter2

fofilter
* hilbert
* mode

o Zilter2

Waveguides

The opcodes that use waveguides to modify asignal are:
e streson
* wguidel

* wguide2

Waveshaping and Phase Distortion

These opcodes can perform dynamic waveshaping or phaseshaping (a.k.a. phase distortion). They differ
from traditional table-based methods of waveshaping by directly calculating the transfer function with
one or more variable parameters for affecting the amount or results of the shaping. Most of these opcodes
could be used on either an audio signal (for waveshaping) or a phasor (for phaseshaping) but tend to work
best for one of these applications.

These opcodes are good for waveshaping:
* chebyshevpoly

e clip

102

Signal Modifiers

* distort

* distortl

* polynomial

 powershape

These opcodes are good for phaseshaping:
* pdclip

* pdhalf

* pdhalfy

103

Instrument Control
Clock Control

The opcodes to start and stop internal clocks are:
* clockoff
» clockon

These clocks count CPU time. There are 32 independent clocks available. Y ou can use the opcode read-
clock to read current values of a clock. See Time Reading for other timing opcodes.

Conditional Values

The opcodes for conditional valuesare==,>=,>,<,<=,and !=.

Duration Control Statements

The opcodes one can use to manipulate a note's duration are:
* ihold

* turnoff

* turnoff2

e turnon

For other realtime instrument control see Real-time Performance Control and I nstrument I nvocation.

FLTK Widgets and GUI controllers

Widgets allow the design of a custom Graphical User Interface (GUI) to control an orchestrain real-time.
They are derived from the open-sourcelibrary FLTK (Fast Light Tool Kit). Thislibrary isone of the fastest
graphic libraries available, supports OpenGL and should be source compatible with different platforms
(Windows, Linux, Unix and Mac OS). The subset of FL TK implemented in Csound providesthefollowing
types of objects:

Containers FLTK Containers are widgets that contain other widgets such as panels, windows,
etc. Csound provides the following container objects:

* Panels
 Scroll areas
* Pack

e Tabs

e Groups

104

Instrument Control

Vauators The most useful objects are named FLTK Valuators. These objects alow the user to
vary synthesisparameter valuesin real-time. Csound providesthefollowing val uator
objects:

o Sliders
* Knobs
* Rollers
» Textfields
e Joysticks
» Counters
Other widgets There are other FTLK widgets that are not valuators nor containers:

¢ Buttons

Button banks
e Labels
» Keyboard and Mouse sensing
Also there are some other opcodes useful to modify the widget appearance:
» Updating widget value.
* Setting primary and selection colors of awidget.
 Setting font type, size and color of widgets.
» Resizing awidget.
* Hiding and showing a widget.
There are also these general opcodes that allow the following actions:
* Running the widget thread: FLrun
* Loading snapshots containing the status of all valuators of an orchestra: FLgetsnap and FLIoadsnap.
 Saving snapshots containing the status of all valuators of an orchestra: FLsavesnap and FLsetsnap
* Setting the snapshot group of a declared valuator: FLsetShapGroup

Below is a simple example of Csound code to create a window. Notice that all opcodes are init-rate and
must be called only once per session. The best way to use them is to place them in the header section
of an orchestra, before any instrument. Even though placing them inside an instrument is not prohibited,
unpredictable results can occur if that instrument is called more than once.

Each container is made up of a couple of opcodes: the first indicating the start of the container block and
the last indicating the end of that container block. Some container blocks can be nested but they must not
be crossed. After defining all containers, a widget thread must be run by using the special FLrun opcode
that takes no arguments.

105

Instrument Control

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform
; Audi o out Audio in No nmessages

- odac -iadc -d ;o RT audio 1/0

; For Non-realtime ouput |eave only the Iine bel ow

; -0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

ckkkkkkkhkhkhkhkkhkkhkhkhhkhkhkkhkhkhkkhkk kK
’

sr=48000
kr =480

ksmps=100
nchnl s=1

;*** |t is recomrended to put alnost all GU code in the
; *** header section of an orchestra

FLpanel "Panel 1", 450, 550 ;***** start of contai ner
; some widgets should contained here
FLpanel End ;***xx end of container
FLrun ;*¥**** runs the widget thread, it is always required
instr 1
; put sone synthesis code here
endi n

ckkkkkkkhkkhkhkkhkkhkhkhkkkhkkhkhkhkkkkk kK
’

</ Csl nst runent s>
<CsScor e>
0 3600 ;dunmy table for realtime input

</ CsScor e>
</ CsoundSynt hesi zer >

The previous code simply creates a panel (an empty window because no widgets are defined inside the
container).

The following example creates two panels and inserts a slider inside each of them:

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform
; Audi o out Audio in No messages

- odac -iadc ; -d v RT audio I/0

; For Non-realtime ouput |eave only the Iine bel ow

; -0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

ckkkkkkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkk kK
’

sr=48000
kr =480
ksmps=100
nchnl s=1
FLpanel " Panel 1", 450, 550, 100, 100 ; ***** start of contai ner
gkl,iha FLslider "FLslider 1", 500, 1000, O ,1, -1, 300,15, 20,50
FLpanel End ;***xx end of container
FLpanel " Panel 2", 450, 550, 100, 100 ; ***** start of contai ner
gk2,ihb FLslider "FLslider 2", 100, 200, 0,1, -1, 300,15, 20,50
FLpanel End ;***xx end of container
FLrun ;*¥**** runs the widget thread, it is always required

106

Instrument Control

instr 1

; gkl and gk2 variables that contain the output of val uator

; Wi dgets previously defined, can be used inside any instrunent
printk2 gkl

printk2 gk2 ;print the values of the val uators whenever they change
endi n

ckkkkkkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkkhkk kK
’

</ Csl nst runent s>
<CsScor e>
0 3600 ;dunmy table for realtinme input

</ CsScor e>
</ CsoundSynt hesi zer >

All widget opcodes are init-rate opcodes, even if valuators output k-rate variables. This happens because
an independent thread is run based on a callback mechanism. It consumes very few processing resources
since thereisno need of polling. (This differsfrom other MIDI based controller opcodes.) So you can use
any number of windows and valuators without degrading the real -time performance.

FLTK Containers

The opcodes for FLTK containers are:
* FLgroup

» FLgroupEnd

* FLpack

* FLpackend

* FLpane

* FLpanelEnd

* FLscrall

* FLscrollEnd

* FLtabs

* FLtabsEnd

FLTK Valuators

The opcodes for FLTK valuators are:
* FLcount
* FlLjoy

* FLknob

FLroller
* FLdlider

* FLtext

107

Instrument Control

Other FLTK Widgets

Other FLTK widget opcodes are:
» FLbox

* FLbutBank

* FLbutton

* FLexecButton

* FLkeyln

» FLhvsBox

* FLhvsBoxSetValue
* FLmouse

e FLprintk

e FLprintk2

» FLdlidBnk

» FLdlidBnk2

» FLdlidBnkGetHandle
» FLdlidBnkSet

» FLdidBnk2Set

* FLdidBnk2Setk

* FLvalue

» FLvkeybd

» FLvslidBnk

* FLvslidBnk2

* FlLxyin

Modifying FLTK Widget Appearance

The following opcodes modify FLTK widget appearance:
* FLcolor

* FLcolor2

¢ FLhide

* FLlabel

108

Instrument Control

General FLTK Widget-related Opcodes

FLsetAlign
FLsetBox
FLsetColor
FLsetColor2
FLsetFont
FLsetPosition
FLsetSze
FLsetText
FLsetTextColor
FLsetTextSze
FLsetTextType
FLsetVal_i
FLsetVal

FLshow

The general FLTK widget-related opcodes are:

FLgetsnap
FLloadsnap
FLrun
FLsavesnap
FLsetsnap
FLupdate

FLsetShapGroup

Instrument Invocation

The opcodes one can use to create score events from within a orchestra are:

* event

e event |

e scordine i

109

Instrument Control

* scoreline

» schedule

* schedwhen

* schedkwhen

* schedkwhennamed

The mute opcode can be used to mute/unmute instruments during a performance.

Instruments definitions can be removed using the remove opcode.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are:
* cggoto

* cigoto

 ckgoto

* cngoto

 esaf

* ese

* endif

 goto

o if

* igoto

» kgoto

* tigoto

* timout

Opcodes to create looping constructions are:
» loop_ge

* loop gt

* loop_le

* loop_lt

o until

+ while

110

Instrument Control

Warning
Some of these opcodes work at i-rate even if they contain k- or a rate comparisons. See the
Reinitialization section.

Real-time Performance Control

Opcodes that monitor and control real-time performance are:
* active

* cpuprc

* maxalloc

 prealloc

* jacktransport

The running csound process can be terminated using exitnow.

Initialization and Reinitialization

Opcodes used for the initialization of variables:
* init
o tival

e passign

o pset

The opcodes that can generate another initialization pass are:
* reinit

* rigoto

* rireturn

The opcode p can be used to find score p-fields at i- or k-rate.

nstrnum returns the instrument number for a named instrument.

Note

Note that a instrument may modify the p3 (duration) parameter at initialisation time. For
example statements like

iattack = 0.02

irel ease = 0.04

isustain = p3

p3 = iattack + isustain + irel ease

111

Instrument Control

arevalid.

Sensing and Control
TCL/TK widgets

 button
» checkbox
» control

o setetrl

Keyboard and mouse sensing

* sensekey (also called sense)
. xyin
Envelope followers
« follow
» follow2
. peak

e rms

Tempo and Pitch estimation

* ptrack
 pitch
e pitchamdf

. tempest

Tempo and Sequencing
e tempo
» miditempo
* tempoval
. seqtime
* seqgtime2

* trigger

112

Instrument Control

* trigseq
* timedseq

 changed

System

* getcfg

Score control

* rewindscore

* setscorepos

Stacks

Csound implements a global stack that can be accessed with the following opcodes:
+ stack

* pop

* push

* pop_f

* push f

Sub-instrument Control

These opcodes | et one define and use a sub-instrument:
* subinstr
* subinstrinit

See also the UDO and Orchestra Macros Macros section for similar functionality.

Time Reading

Opcodes one can use to read time values are:
* readclock

* rtclock

* timeinstk

* timeinsts

e times

113

Instrument Control

* timek

Y ou can obtain the system date using:

* date - Returns the number seconds since 1 January 1970.
* dates- Returns as a string the date and time specified.

Y ou can aso set up counters using clockoff and clockon.

114

Function Table Control

Refer to the f score statement, ftgen, ftgentmp, ftgenonce and the GEN Routines section for information
on creating tables.

Tables can be removed from memory using the ftfree opcode.

Tables by default, require a size which is a power of two. However tables with any size can be generated
by specifying the size as a negative number (see f score statement).

Note

Not all opcodes accept tables whose size is not a power of two, as this may be arequirement
for internal processing.

For information on table access, consult the section Table Access.

Tables for use with the loscilx opcode can be loaded using sndload.

Table Queries

Opcodes the query tables for information are:
* For tablesloaded from a sound file (using GENO1): ftchnls, ftcps,ftlen, ftiptim and ftsr
* For any table: nsamp, ftlen, tableng

The opcode tabsum cal culates the sum of valuesin atable.

Read/Write Operations

Opcodes that read and write to atable are:
« ftloadk

* ftload

o ftsavek

o ftsave

* tablecopy
* tablegpw
* tableicopy
* tableigpw
* tableimix
* tableiw

* tablemix

115

Function Table Control

* tablera

* tablew

* tablewa

* tablewkt
 tabmorph

* tabmorpha
« tabmorphak
* tabmorphi
* tabrec

* tabplay

o ftmorf
Table values can be accessed within expressions using the tb family of opcodes.

Many oscillators are in fact specialized table readers. See the Basic oscillators section.

Table Reading with Dynamic Selection

Opcodes that let one dynamically (at k-rate) select tables are:
* tableikt

o tablekt

o tablexkt

116

Mathematical Operations

Amplitude Converters

Opcodes to convert between different amplitude measurements are:
e ampdb

o ampdbfs

o db

» dbamp

 dbfsamp

Use rmsto find the rms value of asignal. See also Odbfs for another way to handle amplitudes in csound.

Arithmetic and Logic Operations

Opcodes that perform arithmetic and logic operationsare -, +, &&, ||, *, /, *, and %.

See the Conditional Values section and the if family of opcodes for usage of logical operators.

Comparators and Accumulators

The following opcodes perform comparisons between signals at a-rate or k-rate, find maxima or minima,
or accumulate the results of several computations or comparisons:

* max
e max_k

* maxabs

» maxabsaccum
e maxaccum

e min

e minabs

* minabsaccum
e minaccum

* vincr

» clear

s cmp

117

Mathematical Operations

Mathematical Functions

Opcodes that perform mathematical functions are:

abs

ceil

exp

floor

frac

int

log

log10
logbtwo
pow
power shape
powoftwo

round

sgrt

Opcode Equivalents of Functions

Opcodes that perform the equivalent of mathematical functions are:

chebyshevpoly
divz

mac

maca
polynomial
pow

product

sum

taninv2

Random Functions

Opcodes that perform random functions are:

118

Mathematical Operations

e birnd
e rnd

See the section Random (Noise) Generators for opcodes that generate random signals.

Trigonometric Functions

Opcodes that perform trigonometric functions are;
* cos, cosh and cosinv
* sin, sinh and sininv

 tan, tanh, taninv, and taninv2.

119

Mathematical Operations

Linear Algebra Opcodes

Linear Algebra Opcodes — Scalar, vector, and matrix arithmetic on real and complex values.

Description

These opcodes implement many linear algebra operations, from scalar, vector, and matrix arithmetic up to
and including QR based eigenvalue decompositions. The opcodes are designed for digital signal process-
ing, and of course other mathematical operations, in the Csound orchestra language.

The numerical implementation uses the gmm-++ library from home.gna.org/getfemygmm intro [http://
home.gna.org/getfem/gmm_intro].

. Warning
For applications with f-sig variables, array arithmetic must be performed only when the f-
sig is"current,” because f-rate is some fraction of k-rate; currency can be determined with
thela_k_current_f opcode.

For applications using assignments between real vectorsand a-rate variables, array arithmetic
must be performed only when the vectors are "current", because the size of the vector may
be some integral multiple of ksmps; currency can be determined by means of the la_k_cur-
rent_vr opcode.

Table4. Linear Algebra Data Types

Mathematical Type Code Corresponding Csound Type or
Types

real scalar r i-rate or k-rate variable

complex scalar c pair of i-rate or k-rate variables,
e.g. "kr, ki"

real vector vr i-rate variable holding address of
array

real vector a arate variable

real vector t function table number

complex vector vC i-rate variable holding address of
array

complex vector f fsig variable

real matrix mr i-rate variable holding address of
array

complex matrix mc i-rate variable holding address of
array

All arrays are O-based; the first index iterates rows to give columns, the second index iterates columns
to give elements.

All arrays are general and dense; banded, Hermitian, symmetric and sparse routines are not implemented.

120

http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro

Mathematical Operations

An array can be of type codevr, vc, mr, or mc and is stored in ani-rate object. In orchestracode, an array is
passed asaMYFLT i-rate variable that contains the address of the array object, whichisactually stored in
the allocator opcode instance. Although array variables are i-rate, of course their values and even shapes
may change at i-rate or k-rate.

All operands must be pre-allocated; except for the creation opcodes, no opcode ever allocates any arrays.
Thisistrue even if the array appears on the | eft-hand side of an opcode! However, some operations may
reshape arrays to hold results.

Arrays are automatically deallocated when their instrument is deall ocated.

Not only for more efficient performance, but also to make it easier to remember opcode names, the per-
formance rate, output value types, operation names, and input value types are deterministically encoded
into the opcode name:

1. "Ia" for "linear algebra opcode family".
2. "i" or "k" for performance rate.

3. Type code(s) (see above table) for output value(s), but only if the type is not implicit from the input
values.

4. Operation name: common mathematical name (preferred) or abbreviation.
5. Type code(s) for input values, if not implicit.

For additional details, see the gmm++ documentation at http://download.gna.org/getfem/doc/gm-
muser.pdf.

Syntax

Array Creation
ivr la_i_vr_create irows
Create areal vector with irows rows.
ive la_i_vc_create irows
Create a complex vector with irows rows.
inm la_i_nr_create irows, icolums [, odiagonal]
Create areal matrix with irows rows and icolumns columns, with an optional value on the diagonal.
inmc la_i_nt_create irows, icolums [, odiagonal _r, odiagonal _i]

Create a complex matrix with irows rows and icolumns columns, with an optional complex value on the
diagonal.

Array Introspection
i rows la_i_size_vr ivr
Return the number of rowsin real vector ivr.
i rows la_i _size_vc ive

Return the number of rows in complex vector ivc.

121

http://download.gna.org/getfem/doc/gmmuser.pdf
http://download.gna.org/getfem/doc/gmmuser.pdf

Mathematical Operations

irows, icolums la_i_size_nr inr

Return the number of rows and columnsin real matrix imr.

irows, icolums la_i_size_nt inmc

Return the number of rows and columns in complex matrix imc.

kfiscurrent la_k_current _f fsig

Return 1 if fsig is current, that is, if the value of fsig will change on the next kperiod.

kvri scurrent la_k_current _vr ivr

Return 1 if the real vector ivr is current, that is, if Csound's current audio sample frame stands at index
0 of the vector.

la_i_print_vr ivr
Print the value of real vector ivr.

la_i _print_vc ive
Print the value of complex vector ivc.

la_i_print_nr i
Print the value of real matrix imr.

la_i_print_nt imc

Print the value of complex matrix imc.

Array Assignment and Conversion
ivr | a_i _assign_vr ivr
Assign the value of the real vector on the right-hand side to the real vector on the left-hand side, at i-rate.
ivr | a_k_assi gn_vr ivr

Assign the value of thereal vector on the right-hand side to the real vector on the left-hand side, at k-rate.

ive la_i _assign_vc ive

ive la_k_assign_vc ivr

inr la_i _assign_nr inr

inr la_k_assign_nr i

imc la_i _assign_nt imc

imc la_k_assign_nt inr
Warning

Assignments to vectors from tables or fsigs may resize the vectors.

Assignmentsto vectors from a-rate variables, or to a-rate variablesfrom vectors, will be per-
formed incrementally, one chunk of ksmps elements per kperiod. Therefore, array arithmetic
on such vectors should only be performed when the vectors are current, as determined by
thela k_currrent_vr opcode.

122

Mathematical Operations

ivr

ivr

ivr

ive

asig

i tabl enum
i tabl enum

fsig

la_k_assign_a
la_i_assign_t
la_k_assign_t
| a_k_assign_f
la_k_a_assign
la_i_t_assign
la_k_t_assign

la_k_f_assign

Fill Arrays with Random Elements

ivr

ivr

ive

ive

inr

inr

i nc

inc

Array Element Access

ivr

kvr

ive

kve

inr

knr

i nc

knc

i val ue

kval ue

ivalue_r, ivalue_i
kval ue_r, kval ue_i
i val ue

kval ue

ivalue_r, ivalue_i

kval ue_r, kval ue_i

Single Array Operations

inr

la_i _randomvr
la_k_randomvr
la_i _randomyvc
| a_k_random vc
la_i _randomnr
la_k_random nr
la_i _randomnt

la_k_random nt

la_i_vr_set
la_k_vr_set
la_i_vc_set
la_k_vc_set
la_i nr_set
la_k nr_set
la_i_nt_set
la_k_nt_set
la_i_get_vr
la_k_get_vr
la_i _get_vc
la_k_get_vc
la_i_get_m
la_k_get_nr
la_i_get_nt

la_k_get_nt

la_i _transpose_nr

asig
i t abl enunber

i tabl enunber

fsig

ivr

ivr

ivr

ive
[ifill_fracti
[kfill_fracti
[ifill_fracti
[kfill_fracti
[ifill_fracti
[kfill_fracti
[ifill_fracti
[kfill_fracti

irow, ivalue

krow, kval ue

irow, ivalue_

krow, kval ue_

on]
on]
on]
on]
on]
on]
on]

on]

r, ivalue_i

r, kval ue_i

irow, icolum, ivalue

krow, kcol um, ival ue

irow, icolum, ivalue_r,

krow, kcolum, kval ue_r,

ivr, irow
ivr, krow
ive, irow
ive, krow

inmr, irow, icolum

inr, krow, kcolum

inmc, irow, icolum

inmc, krow, kcolum

inr

ival ue_i

kval ue_i

123

Mathematical Operations

inr la_k_transpose_nr inr
inmc la_i _transpose_nt inmc
inmc la_k_transpose_nt inmc
ivr la_i _conjugate_vr ivr
ivr I a_k_conjugate_vr ivr
ive la_i _conjugate_vc ive
ive | a_k_conjugate_vc ive
inm la_i _conjugate_nr inm
inm la_k_conjugate_nr inm
imc | a_i _conjugate_nt imc
inmc | a_k_conjugate_nt inmc

Scalar Operations

ir la_i _nornl_vr ivr
kr la_k_nornil_vr ive
ir la_i _norml_vc ive
kr la_k_norml_vc ive
ir la_i _norml_nr i
kr la_k_norml_nr inm
ir la_i _norml_nt imc
kr la_k_nornil_nt inc
ir la_i _normeuclid_vr ivr
kr l'a_k_norm euclid_vr ivr
ir la_i _normeuclid_vc ive
kr la_k_normeuclid_vc ive
ir la_i _norm euclid_nr nmr
kr l'a_k_norm euclid_nr mr
ir la_i_normeuclid_nt m/c
kr la_k_normeuclid_nt m/c
ir la_i _di stance_vr ivr
kr la_k_di stance_vr ivr
ir la_i _distance_vc ive
kr I a_k_di stance_vc ive
ir l'a_i _nor m nmax inr
kr I a_k_nor m max inmc
ir I a_i _norm max i
kr l'a_k_nor m nmax imc
ir la_i _norm.inf_vr ivr

124

Mathematical Operations

la_k_norm.inf_vr
la_i_norminf_vc
la_k_norm.inf_vc
la_i _norm.inf_nr
la_k _norm.inf_nr
la_i_norm.inf_nc
la_k_norm.inf_nc
la_i_trace_nr
la_k_trace_nr
la_i_trace_nt
la_k_trace_nt
la_i_lu_det
la_k_lu_det

la_i _|u_det

la_k_lu_det

Elementwise Array-Array Operations

ivr

ive

inmc

Inner Products

ir

kr

la_i _add_vr
la_k_add_vc

la_i _add_nr
la_k_add_nt

la_i _subtract _vr
|l a_k_subtract_vc
la_i_subtract_nr
la_k_subtract_nc
la_i _multiply_vr
la_k_multiply_vc
la_i_multiply_nr
la_k_multiply_nc
la_i_divide_vr
la_k_divide_vc
la_i _divide_nr

la_k_divide_nt

la_i_dot _vr
la_k_dot _vr

la_i _dot_vc

3 3 3 3 3 3 33 3 3 3 3

ivr_a,
ivec_a,
inr_a
inc_a
ivr_a,
ivc_a,
inr_a,
inmc_a
ivr_a,
ivc_a,
inr_a,
inmc_a
ivr_a,
ivc_a,
inr_a,

inc_a

ivr_a,
ivr_a,

ivc_a,

ivr_b
ivc_b
inr_b
inmc_b
ivr_b
ivc_b
inr_b
inmc_b
ivr_b
ivc_b
inr_b
inmc_b
ivr_b
ivc_b
inr_b

inmc_b

ivr_b
ivr_b

ivc_b

125

Mathematical Operations

kr, Ki
i
inr
inc
inmc
ivr
ivr
ive

ive

Matrix Inversion
inr, icondition
inr, kcondition
imc, icondition

inmc, kcondition

la_k_dot _vc
la_i_dot_nmr
la_k_dot_nmr
la_i _dot_nt
la_k_dot_nt
la_i_dot_nr _vr
la_k_dot_nr_vr
la_i _dot_nt_vc

la_k_dot_nt_vc

la_i_invert_nr
la_k_invert_nr
la_i_invert_nt

la_k_invert_nt

Matrix Decompositions and Solvers

ivr
ivr
ive
ive
ivr
ivr
ive

ive

inr, ivr_pivot,
inr, ivr_pivot,
imc, ivr_pivot,

inmc, ivr_pivot,

ivr_x
ivr_x
ivc_x
ive_x
inr_q,
inr_q
int_q
inmc_q

ivr_ei

inmr_r
inmr_r
inmc_r
imc_r

g_vals

i size
ksi ze
isize

ksi ze

I a_i _upper_sol ve_nr
| a_k_upper_sol ve_nr
la_i _upper_solve_nt
| a_k_upper_sol ve_nt
la_i _| ower_sol ve_nr
la_k_|l oner _sol ve_nr
la_i _| owner_solve_nt
la_k_| ower _sol ve_nt
la_i _lu_ factor_nmr
la_k_lu_factor_m
la_i _lu_factor_nt
la_k_lu_factor_nt
la_i _lu_solve_m
la_k_lu_solve_nr
la_i_lu_solve_nt
la_k_lu_solve_nt
la_i_qr_factor_mr
la_k_qr_factor_nr
la_i_qgr_factor_nt
la_k_qgr_factor_nt

la_i _qr_eigen_nr

ivc_a, ivc_b

inr_a, inmr_b

inr_a, inr_b

imc_a, inmc_b

inc_a, inc_b

inr_a, ivr_b

inr_a, ivr_b

inc_a, ivc_b

inmc_a, ivc_b

3 3 3 3

3 3 3 2 3 3 3 3% 82 3 3 3 3 3 3 3 3 38 3 =2 3

[, j_1_diagonal]
[, j_1_diagonal]
[, j_1 diagonal]
[, j_1_diagonal]
[, j_1_diagonal]
[, j_1 _diagonal]
[, j_1_diagonal]
[, j_1_diagonal]

ivr_b

ivr_b

ivc_b

ivc_b

i _tolerance

126

Mathematical Operations

ivr_eig_vals la_k_qr_eigen_nr inr, k_tolerance

ivr_eig_vals la_i_qgr_eigen_nt inmc, i_tolerance

ivr_eig_vals la_k_qgr_eigen_nt inmc, k_tolerance
Warning

Matrix must be Hermitian in order to compute eigenvectors.

ivr_eig vals, im_eig_vecs la_i_gr_symeigen_nr inr, i_tolerance
ivr_eig_vals, inmr_eig_vecs la_k_gr_symeigen_nr inr, k_tolerance
ivc_eig_vals, inc_eig_vecs la_i_gr_symeigen_nc int, i_tolerance

ivc_eig vals, inc_eig_vecs la_k gr_symeigen_nc int, k_tolerance

Credits

Michael Gogins

New in Csound version 5.09

127

Mathematical Operations

Array Opcodes

Array Opcodes

Variable Name

An array must be created (viainit or fillarray) askMyName ending brackets. The brackets determine
the dimensions of the array. So,
kArr[] init 10

creates aone-dimensional array of length 10, whereas

KArr[][] init 10, 10
creates atwo-dimensional array with 10 rows and 10 columns.

After theinitalization of the array, referring to the array asawholeis done any brackets. Brackets
areonly used if an element isindexed:

KArr[] init 10 ;with brackets because of initialization
kLen = |l enarray(kArr) ;W thout brackets
kFirstEl = kArr[0] ;indexing with brackets

The same syntax is used for asimple copy viathe '=" operator:

kArr1[] fillarray 1, 2, 3, 4, 5
kArr2[] = kArrl ;creates kArr2 as copy of kArrl

k-rate

Note that most array operations are currently k-rate only. So like any other k-rate opcode, an operation on
arrayswill be automatically repeated every k-cycle. For instance, this code will repeat re-writing the array
with different random values every k-cycle, aslong as the instrument runs:

kArr[] init 10

klndx =20

until klndx == lenarray(kArr) do
kArr[klndx] rnd31 10, O
klndx += 1

od

If you want to avoid this, you must organizeit in one of the usual ways, for instance by using atrigger:

kArr[] init 10
kTrig metro 1

if kTrig == 1 then ;do the follow ng once a second
klndx =0
until klndx == lenarray(kArr) do
kArr[klndx] rnd31 10, O
kl ndx += 1
od
endi f

128

Mathematical Operations

Creation/Initialization

The usual way to create an array iswith init:

KArr[] init 10 ;creates one-di nensional array with length 10
KArr[][] init 10, 10 ;creates two-di nensional array

A one-dimensional array can also be created and filled with distinct values by the opcode fillarray. This
line creates a vector with length 4 and putsin the numbers[1, 2, 3, 4]:

kArr[] fillarray 1, 2, 3, 4

Length

The function lenarray(kArr) reports the length of an array. See example for function lenarray.

Copy Arrays to/from Tables

copyf2array kArr, kfn

copies data from an ftable to a vector.

copya2ftab kArr, kfn

copies data from a vector to an function table.

See examples for opcodes copyf2array and copya2ftab.

Array Operations: Math

+, -, * /on a Number

If the four basic math operators are used between an array and a scalar (number), the operation is applied
to each element. The safest way to do thisisto store the result in anew array:

kArr1[] fillarray 1, 2, 3

kArr2[] = kKArrl + 10 i (kArr2 is now [11, 12, 13])

Here is an example of array/scalar operations. It uses the file array_scalar_math.csd [exampledarray_s-
calar_math.csd].

Example 3. Example of array operations

<CsoundSynt hesi zer >
<CsOpt i ons>

-n -m28

</ CsOpti ons>

<Csl nst runment s>

instr 1

;create array and fill wth nunmbers 1..10
kArr1[] fillarray 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

;print content

129

examples/array_scalar_math.csd
examples/array_scalar_math.csd
examples/array_scalar_math.csd

Mathematical Operations

printf "9%", 1, "\nlnitial content:\n"

kndx = 0
until kndx == lenarray(kArrl) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KArr1[kndx]
kndx += 1
od
;add 10
kArr2[] = kArrl + 10

;print content
printf "%", 1, "\nAfter adding 10:\n"

kndx = 0
until kndx == lenarray(kArr2) do
printf "kKArr[%l] = %\n", kndx+1l, kndx, KArr2[kndx]
kndx += 1
od

;subtract 5
kArr3[] = kArr2 - 5

;print content
printf "%", 1, "\nAfter subtracting 5:\n"

kndx = 0
until kndx == lenarray(kArr3) do
printf "kKArr[%l] = %\n", kndx+1l, kndx, KArr3[kndx]
kndx += 1
od

;multiply by -1.5
kArr4[] = kArr3 * -1.5

;print content
printf "%", 1, "\nAfter multiplying by -1.5:\n"

kndx = 0
until kndx == lenarray(kArr4) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KArr4[kndx]
kndx += 1
od

;divide by -3/2
kArr5[] = kArrd | -(3/2)

;print content
printf "%", 1, "\nAfter dividing by -3/2:\n"

kndx = 0
until kndx == lenarray(kArr5) do
printf "kKArr[%l] = %\n", kndx+1l, kndx, KArr5[kndx]
kndx += 1
od
;turnof f
turnof f
endin

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

+, -, ¥,/ on a Second Array

If the four basic math operators are used between two arrays, the operation is applied element by element.
Theresult can be straightforward stored in anew array:

130

Mathematical Operations

kArr1[] fillarray 1, 2, 3
kArr2[] fillarray 10, 20, 30
kArr3[] = KArrl + kArr2 i (kArr3 is now [11, 22, 33])

Here is an example of array operations. It uses the file array_array _math.csd [examples/array_ar-
ray_math.csd].

Example 4. Example of array operations

<CsoundSynt hesi zer >
<CsOpti ons>

-n -m28

</ CsOpti ons>

<Csl nstrunent s>

instr 1
;create array and fill with numbers 1..10 resp .1..1
kArr1[] fillarray 1, 2, 3, 4, 5 6, 7, 8, 9, 10
kArr2[] fillarray 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

;print contents
printf "o%", 1, "\nkArrl:\n"

kndx = 0
until kndx == lenarray(kArrl) do
printf "kArr1[%l] = %\n", kndx+1, kndx, KArr1[kndx]
kndx += 1
od
printf "o%", 1, "\nkArr2:\n"
kndx = 0
until kndx == lenarray(kArr2) do
printf "kArr2[%l = %\n", kndx+1, kndx, KArr2[kndx]
kndx += 1
od

;add arrays
kArr3[] = kArrl + KArr2

;print content
printf "9%", 1, "\nkArrl + kArr2:\n"

kndx = 0
until kndx == lenarray(kArr3) do
printf "kArr3[%l] = %\n", kndx+1, kndx, KArr3[kndx]
kndx += 1
od

;subtract arrays
kArr4[] = kArrl - KArr2

;print content
printf "9%", 1, "\nkArrl - kArr2:\n"

kndx = 0
until kndx == lenarray(kArr4) do
printf "kArr4[%l = %\n", kndx+1, kndx, KArr4[kndx]
kndx += 1
od

;multiply arrays
kArr5[] = kArrl * KArr2

;print content
printf "9%", 1, "\nkArrl * kArr2:\n"
kndx = 0
until kndx == lenarray(kArr5) do

131

examples/array_array_math.csd
examples/array_array_math.csd
examples/array_array_math.csd

Mathematical Operations

printf , kndx+1, kndx, kArr5[kndx]
kndx += 1
od
;divide arrays
kArr6[] = kArrl / KArr2
;print content
printf Y
kndx = 0
until kndx == lenarray(kArr6) do
printf , kndx+1, kndx, kArr6[kndx]
kndx += 1
od
; turnof f
t ur nof f
endi n

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

Map a Function to an Array

kArr Res maparray kArrSrc, "fun"
maps the k-rate 1-arg function in the string to every element of the vector.
Possible functions are for instance abs, ceil, exp, floor, frac, int, log, 10910, round, sgrt. Thisisasimple

example:

kArrSrc[] fillarray 1, 2, 3, 4, 5
kArrRes[] init 5
kArr Res maparray KkArrSrc, "sqrt"

See example for opcode maparray.
Array Operations: min, max, sum, scale, slice
Minimum and Maximum

kMn [,kM nlndx] mnarray kArr

returns the smallest value in an array, and optionally its index.

kMax [, kMaxl ndx] nmaxarray KArr

returns the largest value in an array, and optionally its index. See examples for opcodes minarray and
maxarray.

Sum

132

Mathematical Operations

kSum sumarray KArr

returns the sum of all valuesin kArr. See example for opcode sumarray.

Scale
scal earray kArr, kM n, kMax
scales all valuesin kArr between kMin and kMax.
kArr[] fillarray 1, 3, 9, 5, 6
scalearray kArr, 1, 3
changeskArr to [1, 1.5, 3, 2, 2.25]. See example for opcode scalearray.
Slice

slicearray kArr, iStart, iEnd
returns aslice of kArr from index iStart to index iEnd (included).

The array for receiving the slice must have been created in advance:

KArr[] fillarray 1, 2, 3, 4, 5 6, 7, 8 9

KArri1[] init 5

KArr2[] init 4

kArr1 slicearray kArr, 0, 4 [1, 2, 3, 4, 5]
kArr2 slicearray kArr, 5, 8 [6, 7, 8, 9]

See example for opcode dlicearray.

Arrays in UDOs

The dimension of an input array must be declared in two places:
» ask[] or k[][] in the type input list
» askName[], kName[][] etc in the xin list.

For instance :

opcode FirstEl, k, K[]
;returns the first elenent of vector KArr
kKArr[] xin
xout kArr[0]
endop

Here isan example of an array in an UDO. It uses the file array_udo.csd [examples/array_udo.csd].

Example 5. Example of an array in an UDO

<CsoundSynt hesi zer >
<CsOpti ons>
-nnl28

133

examples/array_udo.csd
examples/array_udo.csd

Mathematical Operations

</ CsOpti ons>
<Csl nstrunent s>

opcode FirstEl, k, Kk[]

;returns the first elenent of vector KArr
kKArr[] xin
xout KkArr[0]

endop

instr 1
kArr[] fillarray 6, 3, 9, 5, 1
kFirst FirstEl KArr
printf "kFirst = %\n", 1, kFirst
t ur nof f

endi n

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

Note that if an opcode (for example inrg), alters arguments on its right hand argument list, an array index
should not be used there. Unlike anormal variable, the array won't changed by the opcode.

Credits

This manual page has been written by Joachim Heintz.
July 2013

New in Csound 6.00

134

Pitch Converters

Functions

Opcodes that provide common pitch functions are:
 cent

e cpsmidinn
* cpsoct

* cpspch

* octave

* octcps

» octmidinn
 octpch

e pchmidinn
* pchoct

* semitone

Tuning Opcodes

Opcodes that provide tuning functions are:
* cps2pch
* cpsxpch
* cpstun

* cpstuni

135

Real-time MIDI Support

Csound supports realtime MIDI input and output, as well as input from MIDI files. Reatime MIDI input
is activated using the -M (or --midi-device=DEVICE) command line flag. Y ou must specify the device
number or name after the -M. For example to use device number 2, you would use something like:

csound -M2 myrtmidi.csd
Y ou can find out the available devices by using an out of range device:

csound -M99 myrtmidi.csd

Note

This will only work if the MIDI module can be accessed by device number. For alsa, you
must first find the device name using:

cat /proc/asound/cards
Y ou must then use something like:
csound -+rtmidi=alsa-M hw:3 myrtmidi.csd
Realtime MIDI output is activated using -Q, using device number or names as shown above.

Y ou can also load aMIDI file using the -F or --midifile=FILE command lineflag. The MIDI fileisreadin
realtime, and behaves as if it was being performed or received in realtime. So the csound program is not
aware if MIDI input comes from aMIDI file or directly from aMIDI interface.

Once realtime MIDI input and/or output has been activated, opcodes like MIDI Input and MIDI Output
will have effect.

When MIDI input is enabled (with -M or -F), each incoming noteon message will generate anote event for
an instrument which has the same number as the channel of the event (This means that MIDI controlled
instruments are polyphonic by default, since each note will generate a new instance of the instrument.) If
you have 1 instrument only, Csound works in omni mode, ie. it responds to all channelsinto that single
instrument. If you have more than oneinstrument and instrs 1 - 16 , then by default instr 1 -> chn 1, instr 2
-> chn 2, unless you alter the mapping (see massign and pgmassign to change this behavior). If you have
more than one instrument, but instr N in between 1 - 16 is missing, then chn N will be routed by default
to the lowest order instrument.

Seethe MIDI/Score Interoperability opcodes for information on designing instruments which can be used
from the score or driven by MIDI.

There are several reatime MIDI modules available, you must use the -+rtmidi flag (See -+rtmidi), to
specify the module. The default module is portmidi which provides adegquate MIDI 1/0 on all platforms,
however for improved performance and reliability some platform specific modules are also provided.

Currently the midi modules available are:

» alsa- Tousethe ALSA midi system (Linux only)

* jack - To usethe Jack midi system

» winmme - To use the windows MME system (Windows only)

 portmidi - To use the portmidi system (al platforms). Thisis the default setting.

136

Real-time MIDI Support

e virtual - To use avirtual graphical keyboard (See below) as MIDI input (all platforms)

Tip

When csound runs, it will process the score and then quit. If there are no eventsin the score,
Csound will exit immediately. If you want to use only MIDI eventsinstead of score events,
you need to tell Csound to run for acertain amount of time. This can be done with adummy
f-statement like "f 0 3600".

Virtual MIDI Keyboard

1 Ao [] [&[0 []
2 Ao [] 7 & [o []
3 4 [o [] B 4 [o []
[4 [o [] El=-REERN
- 10 | SN

Channel [1 £ Bank [Bank 1 ~|Pragram [Acoustic ¢

All Motes Off

Virtual MIDI keyboard.

Thevirtual MIDI keyboard module (activated using -+rtmidi=virtual on the command line flags) provides
away of sending realtime MIDI information to Csound without the need of aMIDI device. It can send note
information, control changes, bank and program changes on a specified channel. The MIDI information
fromthevirtual keyboard isprocessed by Csound in exactly the sameway asMIDI information that comes
fromthe other MIDI drivers, so if your Csound orchestrais designed to work with hardware MIDI devices,
thiswill also work.

For the device flag (-M), the virtual keyboard uses this to take in the name of a keyboard mapping files.
Like all MIDI drivers, a device must be given to activate the driver. If you would like to just use the
default settings of the keyboard, smply passingin O (i.e. -MO0) and the virtual keyboard will useits default
settings. If instead of the 0 aname of afileisgiven, the keyboard will attempt to load thefile as akeyboard
mapping. If the file could not be opened or read correctly, the default settings will be used.

Keyboard Mapping files allow the user to customize the name and number of banks as well as the name
and number of programs per bank. The following example keyboard mapping (named keyboard.map) has
inline comments on the file format. Thisfile is also available with the Csound source distribution in the
InOut/virtual_keyboard folder.

137

Real-time MIDI Support

Cust om Keyboard Map for Virtual Keyboard
Steven Yi

USAGE

When using the Virtual Keyboard, you can supply a filename for a nmapping
of banks and prograns via the -Mflag, for exanple:

csound -+rtmdi=virtual -Meyboard.map nmy_project.csd
| NFORVATI ON ON THE FORVAT

#

#

#

#

#

#

#

#

#

#

#

#

-lines that start with '# are comments

-lines that have [] start new bank definitions,

the contents are bankNunrbankNanme, with bankNume[1, 16384]

-lines follow ng bank statements are program definitions

1in the format programNun¥progranmName, wi th progranmNume[1, 128]
-bankNunbers and programNunbers are defined in this file

starting with 1, but are converted to midi values (starting
wth 0) when read

#
#
#
#
#
#
#
#
#
#
#

NOTES

-if an invalid bank definition is found, all program
defintions that follow will be ignored until a new
valid bank definition is found

-if a valid bank is defined by no valid prograns found
for that bank, it will default to General M DI program
definitions

-if an invalid programdefinition is found, it will be
i gnored

[1=y Bank]

1=My Test Patch 1
2=My Test Patch 2
30=My Test Patch 30

[2=My Bank2]

1=My Test Patch 1(bank2)
2=My Test Patch 2(bank2)
30=My Test Patch 30(bank3)

The ten diders up top are by default set to MIDI Controller number 1-10 though they can be changed to
whatever one wishes to use. The controller numbers and values of each slider are set per channel, so one
may use different settings and values for each channel.

By default there are 128 banks and for each bank 128 patches defaulting to General Midi names. The MIDI
bank standard uses 14-hit resol ution to support 16384 possible banks, but the bank numbers by default are
0-127. To use values higher than 127, one should use a custom keyboard map and set the desired bank
number value for the bank name. The virtual keyboard will correctly transmit the bank number as MSB
and L SB with controller numbers 0 and 32.

Beyond the input available from interacting with the GUI viamouse, one may a so trigger off MIDI notes
by using the ASCII keyboard when the virtual keyboard window is focused. The layout is done much like
atracker and offers two octaves and amajor third to trigger, starting from Middle-C (MIDI note 60). The
ASCII keyboard MIDI note values are given in the following table.

Table5. ASCII Keyboard MIDI Note Values

Keyboard Key MIDI Value
Z 60

138

Real-time MIDI Support

Keyboard Key MIDI Value
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

S|oS|]o|lQ|<|o|a| X|n

—

o|wls[Nv[a]g

=

C I NI<|O| | O

T |O| 0| ©

Here'san example of usage of the virtual MIDI keyboard. It usesthefilevirtual.csd [examples/virtual .csd].

<CsoundSynt hesi zer >
<CsOptions>; Select audio/mdi flags here according to platform

; Audi o out Audio in Virtual M DI -M) is needed anyway
- odac -iadc -+rtmdi=virtual -M
</ CsOpti ons>

<Csl nstrunent s>
; By Mark Janerson 2007

sr=44100
ksnps=10
nchnl s=2

139

examples/virtual.csd
examples/virtual.csd

Real-time MIDI Support

massign 1,1
prealloc 1,10

instr 1 ;Mdi FMsynth
inote cpsmd
ivel oc anmpmi di 10000
idur = 2

xtratim1
kgate oscil 1,10,2
anoi se noi se 100*i note, .99
acps sanphol d anoi se, kgate
aosc oscili 1000, acps, 1
aout = aosc

Use controller 7 to control vol une
kvol ctrl7 1, 7, 0.2, 1

outs kvol * aout, kvol * aout
endi n
</ Csl nstrunent s>

<CsScor e>

f0 3600

f1 0 1024 10 1

f2 016 718 0 8

f3 01024 101 .5 .6 .3 .2 .5

e
</ CsScor e>
</ CsoundSynt hesi zer >

MIDI input

The following opcodes can receive MIDI information:

» MIDI information for any instruments: aftouch, chanctrl and polyaft, pchbend.

* MIDI information for MIDI-triggered instruments: veloc , midictrl and notnum. See also Converters.
* MIDI Controller input for any instrument: ctrl7, ctrl14 and ctrl21.

* MIDI Controller input for MIDI-triggered instruments only: midic7, midic14 and midic21.

* MIDI controller value initialization: initc7, initc14, initc21 and ctrlinit.

* Generic MIDI input: midiin.

massign can be used to specify the csound instrument to be triggered by a particular MIDI channel. pg-
massign can be use to assign a csound instrument to a specific MIDI program.

MIDI Message Output

Opcodes that produce MIDI output are:
* mdelay

s nrpn

140

Real-time MIDI Support

* outiat
* outic
+ outicl4
* outipat
e outipb
e outipc
* outkat
 outkc
* outkcl4
* outkpat
* outkpb
 outkpc

* midiout

Generic Input and Output

Opcodes for generic MIDI input and output are midiin and midiout.

Converters

The following opcodes can convert MIDI information from a MIDI-triggered instrument instance:

« MIDI note number to frequency converters. cpsmidi, cpsmidib, cpstmid, octmidi, octmidib, pchmidi and
pchmidib.

» MIDI velocity to amplitude converters: ampmidi and ampmidid.

Event Extenders

Opcodes that let one extend the duration of an event are;
* release

e xtratim

Note-on/Note-off Output

Opcodes to output MIDI note on or off messages are:
e midion

e midion2

141

Real-time MIDI Support

moscil

noteoff

noteon

noteondur

noteondur2

MIDI/Score Interoperability opcodes

The following opcodes can be used to design instruments that work interchangably for real-time MIDI
and score events:

midichannel aftertouch
midichn
midicontrolchange
mididefault
midinoteoff
midinoteoncps
midinoteonkey
midinoteonoct
midinoteonpch
midipitchbend
midipolyaftertouch

midiprogramchange.
Adapting a score-activated Csound instrument.

To adapt an ordinary Csound instrument designed for score activation for score/MIDI inter-
operability:

» Changeal linen, linseg, and expseg opcodesto linenr, linsegr, and expsegr, respectively,
except for ade-clicking or damping envelope. Thiswill not materially change score-driven
performance.

» Add thefollowing lines at the beginning of the instrument definition:

; Ensures that a MDI-activated instrunent

; Will have a positive p3 field.

m di default 60, p3

; Puts M DI key translated to cycles per

; second into p4, and MDI velocity into p5
m di not eoncps p4, p5

142

Real-time MIDI Support

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options,
and the choice of p-fieldsis arbitrary.

MIDI Realtime Input/Ouput command line options

New MIDI 1/0 flagsin Csound 5.02, can replace most uses of these MIDI interop opcodes,
and make usage easier.

System Realtime Messages

Opcodes for System Realtime MIDI messages are: mclock and mrtmsg.

Slider Banks

Opcodes for slider banks of MIDI controls are:
* dlider8

* dider8f

* dlider16

o dider16f

o dlider32

o dider32f

* dider64

* dlider64f

» sl6b14

» s32bl4

* dliderKawai

Opcodes for storing slider banks of MIDI controls to tables are:
 dlider8table

* dlider8tablef

+ dliderl6table

* dider16tablef

+ dlider32table

* dider32tablef

+ dlider64table

+ dlider64tablef

143

Spectral Processing

See the section Additive Synthesis/Resynthesis for the basic resynthesis opcodes.

Short-time Fourier Transform (STFT) Resynthe-

SIS

Use of PVOC-EX fileswith the old Csound pvoc opcodes

All the original pvoc opcodes can now read a PVOC-EX file, as well as the native non-
portable file format. As the PVOC-EX file uses a double-size analysis window, users may
find that this gives a useful improvement in quality, for some sounds and processes, despite
the fact that the resynthesis does not use the same window size.

Apart from the window size parameter, the main difference between the original .pv format
and PVOC-EX isin the amplitude range of analysis frames. While rescaling is applied, so
that no significant difference in output level is experienced, whichever file format is used,
somedlight loss of amplitude can still arise, asthe double window usageitself modifiesframe
amplitudes, of which theresynthesis codeis unaware. Notethat all the original pvoc opcodes
expect amono analysis file, and multi-channel PV OC-EX fileswill accordingly be rejected.

Opcodes the implement STFT resynthesis are;

mincer
temposcal
tableseg
pvadd
pvbufread
pvcross
pvinterp
pvoc
pvread
tableseg
tablexseg

vpvoc

Use the utility PVANAL to generate pv analysisfiles.

Linear Predictive Coding (LPC) Resynthesis

The linear predictive coding resynthesis opcodes are:

144

Spectral Processing

* |pfreson
* |pinterp
* |pread
* |preson
* |pslot

LPC analysisfiles can be created using the LPANAL utility.

Non-standard Spectral Processing

These units generate and process non-standard signal datatypes, such as down-sampled time-domain con-
trol signals and audio signals, and their frequency-domain (spectral) representations. The data types (d-,
w-) are self-defining, and the contents are not processable by any other Csound units.

The opcodes for non-standard spectral processing are specaddm, specdiff, specdisp, specfilt, spechist,
specptrk, specscal, specsum, and spectrum.

Tools for Real-time Spectral Processing (pvs
opcodes)

With these opcodes, two new core facilities are added to Csound. They offer improved audio quality,
and fast performance, enabling high-quality analysis and resynthesis (together with transformations) to
be applied in real-time to live signals. The original Csound phase vocoder remains unaltered; the new
opcodes use an entirely separate set of functions based on “pvoc.c” in the CARL distribution, written by
Mark Dolson.

The Csound dnoise and srconv utilities (also by Dolson, from CARL) aso use this pvoc engine. CARL
pvoc is aso the basis for the phase vocoder included in the Composer's Desktop Project. A few small but
important modifications have been made to the original CARL code to support real-time streaming.

1. Support for the new PVOC-EX analysisfile format. Thisisafully portable (cross-platform) open file
format, supporting three analysisformats, and multi-channel signals. Currently only the standard ampli-
tude+frequency format has been implemented in the opcodes, but the file format itself supports ampli-
tude+phase and complex (real-imaginary) formats. In addition to the new opcodes, the original Csound
pvoc opcodes have been extended (and thereby with enhanced audio quality in some cases) to read
PVOC-EX filesaswell asthe original (non-portable) format.

Full details of the structure of a PVOC-EX file are available via the website: http://www.c-
s.bath.ac.uk/~j pff/NOS-DREAM /researchdev/pvocex/pvocex.html. This site also gives details of the
freely available console programs pvocex and pvocex2 which can be used to create PV OC-EX files
in al supported formats.

2. A new frequency-domain signal type, fully streamable, with f as the leading character. In this docu-
ment it is conveniently referred to as an fsig. Primary support for fsigs is provided by the opcodes
pvsana and pvsynth, which perform conventional phase vocoder overlap-add analysis and resynthesis,
independently of the orchestra control-rate. The only requirement is that the control-rate kr be higher
than or equal to the analysis rate, whch can be expressed by the requirement that ksmps <= overlap,
where overlap is the distance in samples between analysis frames, as specified for pvsanal. As overlap

145

http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html
http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html

Spectral Processing

ATS

istypicaly at least 128, and more usually 256, thisis not an onerous restriction in practice. The opcode
pvsinfo can be used at init time to acquire the properties of an fsig.

The fsig enables the nominal separation between the analysis and resynthesis stages of the phase
vocoder to be exposed to the Csound programmer, so that not only can alternatives be employed for
either or both of these stages (not only oscillator-bank resynthesis, but also the generation of synthet-
ic fsig streams), but opcodes, operating on the fsig stream, can themselves become more elemental.
Thus the fsig enables the creation of atrue streaming plugin framework for frequency domain signals.
With the old pvoc opcodes, each opcode is required to act as a resynthesiser, so that facilities such as
pitch scaling are duplicated in each opcode; and in many cases the opcodes are parameter-rich. The
separation of analysis and synthesis stages by means of the fsig encourages the development of awide
range of simple building-block opcodesimplementing one or two functions, with which more elaborate
processes can be constructed.

Thisis very much a preliminary and experimental release, and it is possible that the precise definition of
the opcodes may change, in response to user feedback. Also, clearly, many new possibilities for opcodes
are opened up; these factors may also have a retrospective influence on the opcodes presented here.

Note that some opcode parameters currently have restricted or missing implementation. Thisisat least in
part in order to keep the opcodes simple at this stage, and also because they highlight important design
issues on which no decision has yet been made, and on which opinions from users are sought.

Oneimportant point about the new signal typeisthat because the analysisrateistypically much lower than
kr, new analysis frames are not available on each k-cycle. Internally, the opcodes track ksmps, and also
maintain aframe counter, so that frames are read and written at the correct times; this processis generally
transparent to the user. However, it means that k-rate signals only act on an fsig at the analysisrate, not at
each k-cycle. The opocde pvsftw returns a k-rate flag that is set when new fsig datais valid.

Because of the nature of the overlap-add system, the use of these opcodesincursasmall but significant de-
lay, or latency, determined by the window size (max(ifftsize,iwinsize)). Thisistypically around 23msecs.
In thisfirst release, the delay is dlightly in excess of the theoretical minimum, and it is hoped that it can
be reduced, as the opcodes are further optimized for real-time streaming.

The opcodes for real-time spectral processing are pvsadsyn, pvsanal, pvscross, pvsfread, pvsftr, pvsftw,
pvsinfo, pvsmaska, and pvsynth.

In addition there are a number of opcodes available as plugins in Csound5,and in the core for Csound6.
These are pvstanal, pvsdiskin, pvscent, pvsdemix, pvsfreeze, pvsbuffer, pvsbufread, pvsbufread?2, pvs-
cale, pvshift, pvsifd, pvsinit, pvsin, pvsout, pvsosc, pvshin, pvsdisp, pvsfwrite, pvslock, pvsmix, pvsmooth,
pvsfilter, pvsblur, pvstencil, pvsarp, pvsvoc, pvsmorph, pvsbandp, pvsbandr, pvswarp, pvsgain, pvs2tab,
tab2pvs.

A number of opcodes are designed to generate and process streaming partialstracks data. these are partials,
treross, trfilter, trsplit, trmix, trscale, trshift, trlowest, trhighest tradsyn, sinsyn, resyn, binit

See the Stacks section for information on the stack opcodes which can stack f-signals.

Spectral Processing

These opcodes can read, transform and resynthesize ATS analysisfiles. Please note that you need the ATS
application to produce analysis files. From the ATS Reference Manual:

"ATSisasoftwarelibrary of functionsfor spectral Analysis, Transformation, and Synthesis of sound based
onasinusoidal pluscritical-band noise model. A sound in ATSisa symbolic object representing a spectral
model that can be sculpted using a variety of transformation functions.”

146

Spectral Processing

For more information on ATS visit: http://www-ccrma.stanford.edu/~juan/ATS.html.

ATS analysisfiles can be produced using the ATS software or the csound utility ATSA.

The opcodes for ATS processing are:

» ATSinfo: reads data out of the header of an ATSfile.

» ATSread, ATSeadnz, ATSbufread, ATSinterpread, ATSpartialtap: read datafrom an ATSfile or buffer.

» ATSadd, ATSaddnz, ATScross, ATSsinnoi: Resynthesize sound.

Credits

Author: Alex Norman
Seattle,Washington
2004

Loris Opcodes

Note

These opcodes are an optional component of CsoundS. Y ou can check if they are installed
by using the command 'csound -Z' which lists all available opcodes.

The Loris family of opcodes wraps: lorisread which imports a set of bandwidth-enhanced partials from
a SDIF-format data file, applying control-rate frequency, amplitude, and bandwidth scaling envelopes,
and stores the modified partials in memory; lorismorph, which morphs two stored sets of bandwidth-en-
hanced partials and stores a new set of partias representing the morphed sound. The morph is performed
by linearly interpolating the parameter envelopes (frequency, amplitude, and bandwidth, or noisiness) of
the bandwidth-enhanced partials according to control-rate frequency, amplitude, and bandwidth morph-
ing functions, and lorisplay, which renders a stored set of bandwidth-enhanced partials using the method
of Bandwidth-Enhanced Additive Synthesisimplemented in the L oris software, applying control-rate fre-
guency, amplitude, and bandwidth scaling envel opes.

For more information about sound morphing and manipulation using Loris and the Reassigned Band-
width-Enhanced Additive Model, visit the Loris web site at www.cerlsoundgroup.org/Loris [http://
www.cerlsoundgroup.org/Lorisg].

Examples

Example 6. Play the partials wihtout modification

; Play the partials in clarinet.sdif
; fromO to 3 sec with 1 ns fadetine
; and no frequency , anplitude, or

; bandwi dth nodification

instr 1

ktime linseg 0, p3, 3.0 ; linear tine function fromO to 3 seconds
| orisread ktime, "clarinet.sdif", 1, 1, 1, 1, .001

asi g |l orisplay 1, 1, 1, 1
out asi g

147

http://www-ccrma.stanford.edu/~juan/ATS.html
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris

Spectral Processing

endin

Example 7. Add tuning and vibrato

Play the partials in clarinet.sdif
fromO to 3 sec with 1 ns fadetine

addi ng tuni ng and vi brato,
"breat hi ness"

anp

instr
kt

if

kv
kv
kb

al
a2

endi n

The instrument in the first example synthesizes a clarinet tone from beginning to end using partials de-
rived from reassigned bandwidth-enhanced analysis of athree-second clarinet tone, stored in afile, cl ar -

i net . sdi f . Theinstrument in Example 2 adds tuning and vibrato to the clarinet tone synthesized by instr
1, boosts its amplitde and noisiness, and applies a highpass filter to the result. The following score can be

i ncreasing the
(noi si ness) and overal

itude, and adding a highpass filter

2
ime linseg

0, p3, 3.0

linear time function fromO to 3 seconds

conpute frequency scale for tuning

(original pitch was G#4)

scale =

make a vibrato envel ope
0, p3/6, 0, p3/6
4, 1 ; table 1

env linseg
ib osci |

wenv linseg

| ori sread
| ori spl ay

at one
out

cpspch(p4)/ cpspch(8.08)

kvenv,

1, p3/6, 1, p3/6, 2, 2*p3/3, 2
"clarinet.sdif",
i fscal etkvi b, 2, kbwenv

hi ghpass filter

kti me,

1,

al, 1000

a2

used to test both of the instruments described above.

Example 8. Morph partials

make sinusoid in table 1

1 0 4096 10 1

play instr 1

strt dur
1 0 3
1 + 1
1 + 6

play instr 2

strt dur
2 1 3
2 3.5 1
2 4 6
2 4 6

ptch
8.08
8.04
8. 00
8.07

; Morph the partials in clarinet.sdif into the
; partials in flute.sdif over the duration of

; the sustained portion of the two tones (from
; .2 to 2.0 seconds in the clarinet, and from

; .5 to 2.1 seconds in the flute)

The onset

; and decay portions in the norphed sound are
; specified by paraneters p4 and p5, respectively.

148

.02, p3/3, .02, p3/6, 0, p3/6, O

1, 1, 1, 1,

cutof f 1000 Hz

Spectral Processing

; The norphing time is the time between the

; onset and the decay. The clarinet partials are

; shfited in pitch to match the pitch of the flute
; tone (D above nmiddle Q).

instr 1

i onset = p4
i decay = p5
itmorph = p3 - (ionset + idecay)
ipshift = cpspch(8.02)/cpspch(8.08)
; clarinet tine function, norph from.2 to 2.0 seconds
kt cl linseg 0, ionset, .2, itnmorph, 2.0, idecay, 2.1
; flute time function, morph from.5 to 2.1 seconds
kt fl linseg 0, ionset, .5, itnmorph, 2.1, idecay, 2.3
krrur ph linseg 0, ionset, 0, itnorph, 1, idecay, 1
| ori sread ktcl, "clarinet.sdif", 1, ipshift, 2, 1, .001
|l orisread ktfl, "flute.sdif", 2, 1, 1, 1, .001
lorisnmorph 1, 2, 3, kmurph, knurph, kmnurph
asig | ori spl ay 3, 1, 1, 1
out asig
endi n

Example 9. More morphing

; Morph the partials in tronbone.sdif into the

; partials in nmeow. sdif. The start and end tines

; for the nmorph are specified by paraneters p4

; and p5, respectively. The norph occurs over the
; second of four pitches in each of the sounds

; from.75 to 1.2 seconds in the flutter-tongued

; tronbone tone, and from1l.7 to 2.2 seconds in

; the cat's neow. Different norphing functions are
; used for the frequency and anplitude envel opes

; so that the partial anplitudes make a faster

; transition fromtronmbone to cat than the frequencies
; (The bandwi dt h envel opes use the same norphing

; function as the anplitudes.)

instr 2
i onset = p4
i mor ph = p5 - p4
irel ease = p3 - p5
kttbn linseg 0, ionset, .75, inmorph, 1.2, irelease, 2.4
kt meow |inseg 0, ionset, 1.7, inmorph, 2.2, irelease, 3.4
knfreq linseg 0, ionset, 0, .75*i nmorph, .25, .25*inorph, 1, irelease, 1
kmanp linseg 0, ionset, 0, .75*imorph, .9, .25%inorph, 1, irelease, 1
|l orisread kttbn, "tronmbone.sdif", 1, 1, 1, 1, .001
|l orisread kt meow, "meow. sdif", 2, 1, 1, 1, .001
lorisnmorph 1, 2, 3, knfreq, kmanp, kmanp
asig | ori spl ay 3, 1, 1, 1
out asig
endi n

Theinstrument in the first morphing example performs a sound morph between a clarinet tone and aflute
tone using reassigned bandwidth-enhanced partials stored incl ari net. sdi f andflute. sdif.

The morph is performed over the sustain portions of the tones, 2. seconds to 2.0 seconds in the case of
the clarinet tone and .5 seconds to 2.1 seconds in the case of the flute tone. The time index functions,
ktcl and ktfl, align the onset and decay portions of the tones with the specified onset and decay times for
the morphed sound, specified by parameters p4 and p5, respectively. The onset in the morphed soundsis

149

Spectral Processing

purely clarinet partial data, and the decay is purely flute data. The clarinet partials are shifted in pitch to
match the pitch of the flute tone (D above middle C).

Theinstrument in the second morphing example performs a sound morph between aflutter-tongued trom-
bone tone and a cat's meow using reassigned bandwidth-enhanced partials stored in t r onbone. sdi f and
meow. sdi f . The datain these SDIF files have been channelized and distilled to establish correspondences
between partials.

The two sets of partials are imported and stored in memory locations labeled 1 and 2, respectively. Both
of the original sounds have four notes, and the morph is performed over the second note in each sound
(from .75 to 1.2 seconds in the flutter-tongued trombone tone, and from 1.7 to 2.2 seconds in the cat's
meow). The different time index functions, kttbn and ktmeow, align those segments of the source and tar-
get partia sets with the specified morph start, morph end, and overall duration parameters. Two different
morphing functions are used, so that the partial ammplitudes and bandwidth coefficients morph quickly
from the trombone values to the cat's-meow values, and the frequencies make a more gradual transition.
The morphed partials are stored in amemory location labeled 3 and rendered by the subsequent lorisplay
instruction. They could also have been used as a source for another morph in a three-way morphing in-
strument. The following score can be used to test both of the instruments described above.

; play instr 1
strt dur onset decay

1 0 3 .25 .15
1 + 1 .10 .10
1 + 6 1. 1.

; play instr 2
strt dur norph_start nmor ph_end
2 0 4 .75 2.75

Credits

This implementation of the Loris unit generators was written by Kelly Fitz (loris@cerlsoundgroup.org
[mailto:loris@cerlsoundgroup.org]).

It is patterned after a prototype implementation of the lorisplay unit generator written by Corbin Cham-
pion, and based on the method of Bandwidth-Enhanced Additive Synthesis and on the sound morphing

algorithmsimplemented in the Lorislibrary for sound modeling and manipulation. The opcodes were fur-
ther adapted as a plugin for Csound 5 by Michael Gogins.

Array-based spectral opcodes

Note

These opcodes are designed to work with k-rate arrays for spectral data manipulation.

o fftinv,
o rfft,

* rifft,

150

mailto:loris@cerlsoundgroup.org
mailto:loris@cerlsoundgroup.org

Spectral Processing

pvs2array,
pvsfromarray,
cmplxprod,
rect2pol,

pol 2rect,
window,

r2c,

czr,

mags, and

phs.

151

Strings

String variables are variables with a name starting with S or gS (for a local or global string variable,
respectively). These variables can be used as input argument to any opcode that expects a quoted string
constant, and can be manipulated at initialization or performance time with the opcodes listed below.

Itisalso possibleto use string p-fields. The string p-field can be used by many orchestra opcodes directly,
or it can be copied to a string variablefirst:

al di skin2 p5, 1

Sname strget p5
al di skin2 Sname, 1

Strings within Csound can be expressed using traditional double quotes (" "), and also using {{ }}. The
second method isuseful to allow ;' and'$' characters within the string without having to used ASCI| codes.

Note
String variables and related opcodes are hot available in Csound versions older than 5.00.

Strings can aso be linked to a number using strset and strget.

Csound 5 also has improvements in parsing string constants. It is possible to specify a multi-line string
by enclosing it within {{ and }} instead of the usua double quote characters, and the following escape
seguences are automatically converted:

* \aadert bell

* \b backspace

* \nnew line

 \r carriage return

e \ttab

* \asingle'\' character

« \nnn the character of which the ASCII code (in octal) is nnn

Note

If the user does not want an escaped sequence to be automatically converted, she has to
escapeit with an additiona '\' character so that Csound knowsit does not haveto interpret the
escaped sequence. For examplethestring " Not escaped\ nl i ne ret ur n" will be converted to

"Not escaped
line return”

before being used, while the string * Escaped\\ nl i ne return" will be converted to

152

Strings

"Escaped\nline return”

before being used.

It can be useful together with the system opcode:

instr 1
; csound5 lets you nake a string with line returns inside double brackets
system {{ ps
date
cd ~/ Deskt op
pwd
Is -1
whoi s csounds. com
1}
endi n

And the python opcodes, among others:

pyruni {{
i mport random

pool =[(1 +i/10.0) ** 1.2 for i in range(100)]

def get_nunber _from pool (n, p):
if randomrandom() < p:
i = int(randomrandonm() * |en(pool))
pool[i] =n
return random choi ce(pool)

H

String Manipulation Opcodes

These opcodes perform operations on string variables (note: most of the opcodes run at init time only,
and have a version with a "k" suffix that runs at both init and performance time; exceptions to this rule
include puts and strget):

* strepy and strepyk - Assignsto astring variable.

* strcat and strcatk - Concatenates strings, and stores the result in avariable.

* stremp and strempk - Compares strings.

* strget - Assignsto astring variable, from strset table at the specified index, or string score p-field.
* strlen and strlenk - Returns the length of a string.

« gsprintf - printf-style formatted output conversion, storing the result in astring variable.

 gsprintfk - printf-style formatted output conversion, storing the result in a string variable at k-rate.
* puts - Prints astring constant or variable.

* strindex and strindexk - Returns the first occurence of a string in another string.

* strrindex and strrindexk - Returns the last occurence of a string in another string.

* strsub and strsubk - Returns a substring of the input string.

153

Strings

String Conversion Opcodes

These opcodes convert string variables (note: most of the opcodesrun at init time only, and have aversion
witha"k" suffix that runsat both init and performancetime; exceptionsto thisruleinclude puts and strget):

* strtod and strtodk - Converts string value to a floating point value at i-rate.
* dtrtol and strtolk - Converts string value to signed integer at i-rate.

* strchar and strchark - Returns the ASCII code of a character in astring.

* strlower and strlowerk - Converts a string to lower case.

* strupper and strupperk - Converts a string to upper case.

154

Vectorial Opcodes

The vectorial opcode family is designed to allow sections of f-tables to be treated as vectors for diverse
operations on them.

Tables of vectors operators

The following Vectorial opocodes support read/write access to arrays of vectors (or arrays of arrays):
 vtablel

* vtablelk
* vtablek
+ vtablea
o vtablewi
* vtablewk
* vtablewa
* vtabi

* vtabk

*+ vtaba

* vtabwi
 vtabwk

» vtabwa

Operations Between a Vectorial and a Scalar
Signal

These opcodes perform numeric operations between a vectorial control signal (hosted inside a function
table), and a scalar signal. Result is a new vector that overrides old values of the table. There are k-rate
and i-rate versions of the opcodes.

All these operators are designed to be used together with other opcodes that operate with vectoria signals
such as vcella, adsynt, adsynt2, etc.

Operations Between a Vectoria and a Scalar Signal:
* vadd
o vmult
> vpow

* vexp

155

Vectorial Opcodes

* vadd i
o vmult_i
* VPOW_i

o vexp i

Operations Between two Vectorial Signals

These opcodes perform operations between two vectors, that is, each element of thefirst vector is processed
with the corresponding element of the other vector. Theresult isanew vector that overridesthe old values
of the source vector.

Operations Between two Vectorial Signals:

* vaddv

» vsubv

o vmultv

o vdiw

* Vpowv

* vexpv

* vcopy

* vmap

e vaddv i

e vaubv i

o vmultv_i

o vdiw i

* VPOWV_i

o vexpv_i

* vcopy_i

All these operators are designed to be used together with other opcodes that operate with vectoria signals
such as vcella, adsynt, adsynt2, etc.

Vectorial Envelope Generators

The opcodes to generate vectors containing envelopes are vliinseg and vexpseg.

These opcodes are similar to linseg and expseg, but operate with vectorial signals instead of with scalar
signals.

156

Vectorial Opcodes

Output is a vector hosted by an f-table (that must be previously alocated), while each break-point of
the envelope is actually a vector of values. All break-points must contain the same number of elements
(ielements).

These operators are designed to be used together with other opcodes that operate with vectorial signals
such as vcella, adsynt, adsynt2, etc.

Limiting and wrapping of vectorial control sig-
nals

The opcodes to perform limiting and wrapping of elements within a vector are:
e vlimit

e wwrap

e vmirror

These opcodes are similar to limit, wrap and mirror, but operate on avector instead of ascalar signal. The
old values of the vector contained in an f-table are over-written if they are out of min/max interval. If you
want to keep the original values of the input vector, use the vcopy opcode to copy it in another table.

All these opcodes work at k-rate.

All these operators are designed to be used together with other opcodes that operate with vectoria signals
such as vcella, adsynt, adsynt2 etc.

Vectorial Control-rate Delay Paths

Vectorial Control-rate Delay Paths:
» vdelayk
* vport

 vecdelay

Vectorial Random Signal Generators

These opcodes generate vectors of random numbersto be stored in tables. They generate asort of 'vectorial
band-limited noise. All these opcodes work at k-rate.

Vectorial random signal generators: vrandh and vrandi.

Cellular automata vectors can be generated using: vcella.

157

Zak Patch System

The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak system can be
thought of as a global array of variables. These opcodes are useful for performing flexible patching or
routing from one instrument to another. The system is similar to a patching matrix on a mixing console or
to amodulation matrix on a synthesizer. It is aso useful whenever an array of variablesis required.

The zak system is initialized by the zakinit opcode, which is usually placed just after the other global
initializations: sr, kr, ksmps, nchnls. The zakinit opcode defines two areas of memory, one areafor i- and
k-rate patching, and the other area for a-rate patching. The zakinit opcode may only be called once. Once
the zak spaceisinitialized, other zak opcodes can be used to read from, and write to the zak memory space,
aswell as perform various other tasks.

Zak channels count from 0, so if you define 1 channel, the only valid channel is channel 0.
Opcodes for the zak patch system are:

» Audio Rate: zacl, zakinit, zamod, zar, zarg, zaw and zawm.

» Control Rate: zkcl, zkmod, zkr, zkw, and zkwm.

e Atinitialization: zir, zZiw and Zziwm

158

Plugin Hosting

Csound currently hosts external plugins using dssi4cs (for LADSPA plugins) on Linux and vst4cs (for
VST plugins) on Windows and Mac OS X.

DSSI and LADSPA for Csound

dssi4cs enables the use of DSSI and LADSPA plugin effects and synthesizers within Csound on Linux.
The following opcodes are available:

dssiinit - Loads a plugin.

dssiactivate - Activates or deactivates aplugin if it has this facility

dssilist - Lists all available pluginsfound inthe LADSPA_PATH and DSSI_PATH global variables.
dssiaudio - Process audio using a Plugin.

dssictls - Send control information to a plugin's control port.

See the entry for dssiinit for a usage example.

Note

Currently only LADSPA plugins are supported, but DSSI support is planned.

VST for Csound

vst4cs enables the use of VST plugin effects and synthesizers within Csound. The following opcodes are
available:

vstinit - Loads a plugin.

vstaudio, vstaudiog - Returns a plugin's output.

vstmidiout - Sends MIDI datato a plugin.

vstparamset, vstparamget - Sends and receives automation data to and from the plugin.
vstnote - Sends a MIDI note with definite duration.

vstinfo - Outputs the Parameter and Program names for aplugin.

vstbankload - Loads an . f xb Bank.

vstprogset - SetsaProgram in an . f xb Bank.

vstedit - Opens the GUI editor for the plugin, when available.

Credits

By: Andres Cabrera and Michael Gogins

Uses code from Hermann Seib's VSTHost and Thomas Grill's vst~ object.

159

Plugin Hosting

VST isatrademark of Steinberg Media Technologies GmbH. VST Plug-In Technology by Steinberg.

160

OSC and Network
Ableton Link Opcodes

The purpose of Ableton Link isto synchronize musical time, beat, and phase between musical applications
performing in real time from separate programs, processes, and network addresses. This is useful, eg.,
for laptop orchestras.

Ableton Liveisnot required to use the Ableton Link protocol, asit is a peer-to-peer protocol. Thereisone
Link session on thelocal areanetwork that maintains aglobal time, tempo, and beat. Any peer may set the
tempo, and thereafter all peersin the session share that tempo. A process may have any humber of peers
(i.e.,, any number of Link objects). Each peer may also defineits own "quantum" i.e. some multiple of the
beat, e.g. a quantum of 4 might imply 1 beat every measure of 4/4 time. The phase of the time is defined
w.r.t the quantum, e.g. phase 0.5 of a quantum of 4 would be the second beat of the measure. Peers may
read and write timelines with local time, beat, and phase, counting from when the peer is enabled, but the
tempo and beat on all timelines for all peersin the session will coincide.

Thefirst peer in asession determinestheinitial tempo. After that, thetempo is changed only, and whenever,
any peer explicity cals the set tempo functon (link_tempo_set, in Csound).

The Link tempo is independent of the Csound score tempo. Performances that need to synchronize the
score tempo with the Link tempo may use the tempo opcode to set the score tempo from the Link tempo;
or conversely, set the Link tempo from the score tempo using the tempoval opcode.

Please note, the phase and beat obtained or set by these opcodes is only as precise as alowed by the
duration of Csound's kperiod, the audio driver used by Csound, network latency and stability, and the
system's most precise clock.

« link create - Creates an Ableton Link peer object.

* link_enable - Enable/disable synchronization with the network Ableton Link session tempo and beat.
* link_is_enabled - Returns whether or not this Ableton Link peer has joined the network session.

* link_tempo_set - Sets the tempo for the network’s Ableton Link session.

* link_tempo_set - Returns the tempo of the network's Ableton Link session.

¢ link_beat_get - Returns the beat, phase, and current time of Ableton Link for this session for a given
quantum.

* link_metro- Returnsatrigger that is 1 on the beat and O otherwi se along with the beat, phase, and current
time of Ableton Link for this session for a given guantum.

« link _beat request - Requests a beat with a specific number at a specific time at a given quantum.

« link _beat force - Forces the network Ableton Link session to adopt a beat with a specific number at a
specific time at a given quantum.

* link_peers - Returns the number of peers currently joined in the network Ableton Link session.

OSC

OSC enables interaction between different audio processes, and in particular between Csound and other
synthesis engines. The following opcodes are available:

161

OSC and Network

e OSCinit - Start an OSC listener thread.

* OClisten - Receive OSC messages.

* OSCsend - Send an OSC message.

Credits

By: John ffitch with the liblo library as inspiration and support.

Network

The following opcodes can stream or receive audio through UDP:

sockrecv

socksend

Remote Opcodes

The Remote opcodes enable transmission of score or MIDI events through a network, so remote instances
(or adifferent local instance) can process them. The following opcodes are available:

insglobal - Used to implement a remote orchestra.
insremot - Used to implement a remote orchestra.
midiglobal - Used to implement aremote MIDI orchestra.
midiremot - Used to implement aremote MIDI orchestra.

remoteport - Defines the port for use with the remote system.

162

Mixer Opcodes

The Mixer family of opcodes provides aglobal mixer for Csound. The Mixer opcodes include Mixer Send
for sending (that is, mixing in) an arate signal from any instrument to a channel of a mixer buss, Mixer-
Receive for receiving an arate signal from a channel of any mixer bussin any instrument, Mixer SetLevel
(krate) and MixerSetLevel i (irate) for controlling the level of the signal sent from a particular send to a
particular buss, Mixer GetLevel for reading (at krate) the level for sending asignal from aparticular send to
aparticular buss, and MixerClear for resetting the busses to zero before the next kperiod of a performance.

163

Signal Flow Graph Opcodes

These opcodes enable the use of signal flow graphs (AKA asynchronous data flow graphs) in Csound
orchestras. Signals flow from the outlets of source instruments and are summed in theinlets of sink instru-
ments. Signals may be krate, arate, frate, or arate arrays. Any number of outlets may be connected to any
number of inlets. When a new instance of an instrument is instantiated during performance, the declared
connections also are automatically instantiated.

Signal flow graphs simplify the construction of complex mixers, signal processing chains, and the like.
They aso simplify the re-use of "plug and play" instrument definitions and even entire sub-orchestras,
which can simply be #included and then "plugged in" to existing orchestras.

Note that inlets and outlets are defined in instruments without reference to how they are connected. Con-
nections are defined in the orchestra header. It is this separation that enables plug-in instruments.

Inlets must be named. Instruments may be named or numbered, but in either case each source instrument
must be defined in the orchestra before any of its sinks. Naming instruments makes it easier to connect
outletsand inletsin any higher-level orchestrato inlets and outletsin any lower-level #included orchestra.

The signa flow graph opcodes include: outleta, for sending an arate signal from any instrument out a
named port. outletk, for sending a krate signal from any instrument out a named port. outletkid, similar
to outletk, but receiving a krate signal only from an identified instance of a port. outletf, for sending an
frate signal from any instrument out a named port. outletv, for sending an arate array signal from any
instrument out anamed port. inleta, for receiving an arate signal through anamed port. inletk, for receiving
a krate signal through a named port. inletkid, similiar to inletk, but transmitting a signal only between
inlet and outlet opcodes . inletf, for receiving an frate signal through a named port. inletv, for receiving an
arate array signal through a named port. connect, for routing the signal from a named outlet in a source
instrument to a named inlet in asink instrument. alwayson for permanently activating an instrument from
the orchestra header, without need of a score statement, e.g. for use as an effect processor receiving inputs
from a number of sources. ftgenonce for instantiating function tables from within instrument definitions,
without need for f-statements in the score or ftgen opcodes in the orchestra header.

A typical scenario for the use of these opcodes would be something like this. A set of instruments would
be defined, each in its own orchestra file, and each instrument would define inlet ports, outlet ports, and
function tables within itself. Such instruments are completely self-contained. Then, aset of effects proces-
sors, such as equalizers, reverbs, compressors, and so on, would also be defined, each initsown file. Then,
a customized master orchestra would #include the instruments and effects to be used, route the outputs of
some instruments into one equalizer and the outputs of other effects into another equalizer, then route the
outputs of both equalizersinto areverb, the output of the reverb into a compressor, and the output of the
compressor into a stereo output soundfile.

Example

Here is an example of the signal flow graph opcodes. It uses the file signalflowgraph.csd [examples/sig-
nalflowgraph.csd].

Example 10. Example of the signal flow graph opcodes.

<CsoundSynt hesi zer >

<CsOpt i ons>
; Select audio/mdi flags here according to platform
; Audi o out Audio in No nmessages
- odac -iadc -d ;o RT audio 1/0
For Non-real tine ouput |eave only the |line bel ow
; -0 madsr.wav -W;;; for file output any platform

164

examples/signalflowgraph.csd
examples/signalflowgraph.csd
examples/signalflowgraph.csd

Signal Flow Graph Opcodes

</ CsOpti ons>
<Csl nstrunent s>

/* Witten by M chael Cogins */

; Initialize the global variables
sr = 44100

ksmps = 100

nchnls = 2

; Connect up the instruments to create a signal flow graph

connect "SinpleSine", "l eftout", "Reverberator", "leftin"
connect "SinpleSine", "rightout", "Reverberator", "rightin"
connect "Mbogy", "l eftout", "Reverberator", "leftin"
connect "Mbogy", "rightout", "Reverberator", "rightin"
connect "Reverberator", "leftout", " Conpressor", "leftin"
connect "Reverberator", "rightout", " Conpressor", "rightin"
connect " Conpressor”, "l eftout", "Soundfile", "leftin"
connect " Conpressor”, "rightout", "Soundfile", "rightin"

; Turn on the "effect” units in the signal flow graph

al wayson "Reverberator”, 0.91, 12000
al wayson " Conpressor”
al wayson " Soundfile"

instr SinpleSine
i hz = cpsmi di nn(p4)
ianmplitude = anmpdb(p5)
print ihz, ianplitude
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent.
i sine ftgenonce 0, 0, 4096, 10, 1

al oscili ianplitude, ihz, isine
aenv madsr 0.05, 0.1, 0.5, 0.2
asignal = al * aenv

; Stereo audio outlet to be routed in the orchestra header
outleta "leftout”, asignal * 0.25
outleta "rightout”, asignal * 0.75

endin

instr Moogy
i hz = cpsmi di nn(p4)
iamplitude = anpdb(p5)
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent.
i sine ftgenonce 0, 0, 4096, 10, 1
asignal vco ianplitude, ihz, 1, 0.5, isine
kfco I'ine 200, p3, 2000
krez init 0.9
asi gnal noogvcf asignal, kfco, krez, 100000
; Stereo audio outlet to be routed in the orchestra header
outleta "leftout”, asignal * 0.75
outleta "rightout”, asignal * 0.25
endi n

instr Reverberator
; Stereo input.
aleftin inleta "leftin”
arightin inleta "rightin”
idelay = p4
icutoff = p5
al eftout, arightout reverbsc aleftin, arightin, idelay, icutoff
; Stereo output.
outleta "leftout”, aleftout
outleta "rightout", arightout

165

Signal Flow Graph Opcodes

endin

instr Conpressor
; Stereo input.
aleftin inleta "leftin”
arightin inleta "rightin”
kt hreshol d = 25000
icompl =
i conp2
irtim
iftime =
al eftout damaleftin, kthreshold, iconmpl, iconp2, irtine, iftine
arightout dam arightin, kthreshold, iconpl, iconp2, irtinme, iftime
; Stereo output.
outleta "leftout”, aleftout
outleta "rightout”, arightout

endi n

0.5
0.763
0.1
0.1

instr Soundfile
; Stereo input.
aleftininleta "leftin”
arightin inleta "rightin”
outs aleftin, arightin
endin

</ Csl nst runment s>

<CsScor e>

; Not necessary to activate "effects" or create f-tables in the score!
; Overlapping notes to create new i nstances of instrunents.
i "SinpleSine” 15 60 85

i "SinpleSine" 25 64 80

i "Mogy" 3 5 67 75

i "Mogy" 4 5 71 70

el

</ CsScor e>

</ CsoundSynt hesi zer >

166

Jacko Opcodes

These opcodes enable the use of Jack ports from within Csound orchestras and instruments. Ports can
receive or send audio or MIDI data, and send note data.

The Jacko opcodes do not replace the Jack driver and Jack command-line options for Csound, nor do the
Jacko opcodes work with them (hence the name "Jacko" instead of "Jack"). The Jacko opcodes are an
independent facility that offers greater flexibility in signal routing.

In addition, the Jacko opcodes can work with the Jack system in "freewheeling” mode, which enables
the use of Jack-enabled external synthesizers, such as Aeolus or Pianoteq, to render Csound pieces either
faster or, even more importantly, slower than real time. This is extremely useful for rendering complex
pieces without dropouts using instruments, such as Aeolus, that may not be available except through Jack.

The Jacko opcodes include: Jackolnit, for initializing the current instance of Csound as a Jack client.
Jackolnfo, for printing information about the Jack daemon, its clients, their ports, and their connections.
JackoFreewheel, for turning Jack's freewheeling mode on or off. JackoAudiolnConnect, for creating a
connection from an external Jack audio output port to a Jack port in Csound. JackoAudi oOutConnect, for
creating aconnection from aJack port in Csound to an external Jack audio input port. JackoMidilnConnect,
for creating aconnection from an external Jack MIDI port. MIDI eventsfrom Jack are received by Csound's
regular MIDI opcodes and MIDI interop system. JackoMidiOutConnect, for creating a connection from a
Jack port in Csound to an external Jack MIDI input port. JackoOn, for turning Jack portsin Csound on or
off. JackoAudioln, for receiving audio from a Jack input port in Csound, which in turn has received the
audio from its connected external port. JackoAudioOut, for sending audio to a Jack output port in Csound,
which in turn will send the audio on to its connected external port. JackoMidiOut, for sending MIDI
channel messages to a Jack output port in Csound, which in turn will send the MIDI on to its connected
external port. JackoNoteOut, for sending a note (with duration) to a Jack output port in Csound, whichin
turn will send the note on to its connected external port. JackoTransport, for controlling the Jack transport.

A typical scenario for the use of the Jacko opcodes would be something like this.

Example

Hereis an example of the Jacko opcodes. It uses the file jacko.csd [examples/jacko.csd].

Example 11. Example of the Jacko opcodes.

<CsoundSynt hesi zer >

<CsOpt i ons>

csound -nR55 -MD -+rtmidi=null -RW --mdi-key=4 --mdi-velocity=5 -0 jacko_test.wav
</ CsOpti ons>

<Csl nst runment s>

NOTE: this csd nmust be run after starting "aeolus -t".

Sr = 48000
; The control rate nust be BOTH a power of 2 (for Jack)
; AND go evenly into sr. This is about the only one that works

ksmps = 128

nchnl s =2

Odbfs =1
Jackol ni t

; To use ALSA nmidi ports, use "jackd -Xseq"

167

examples/jacko.csd
examples/jacko.csd

Jacko Opcodes

; and use "jack_Isp -A -c" or aliases from Jacklnfo
; probably together with information fromthe sequencer
; to figure out the damm port nanes

; JackoM di I nConnect "al sa_pcmin-131-0-Master", "mdiin"
JackoAudi ol nConnect "aeolus:out.L", "leftin"
JackoAudi ol nConnect "aeol us:out.R', "rightin"

JackoM di Qut Connect "nmidiout”, "aeolus:Mdi/in"

; Note that Jack enabl es audio to be output to a regul ar
; Csound soundfile and, at the sane tine, to a sound
; card inreal time to the systemclient via Jack

JackoAudi oQut Connect "leftout”, "system playback 1"
JackoAudi oQut Connect "rightout™, "system playback 2"
Jackol nfo

; Turning freewheeling on seens automatically
; to turn system playback off. This is good

JackoFreewheel 1
JackoOn

al wayson "] ackin"

instr 1

i channel = pl - 1

itime = p2

iduration = p3

i key = p4

ivelocity = p5
JackoNoteQut "nmidiout”, ichannel, ikey, ivelocity
print itime, iduration, ichannel, ikey, ivelocity
endi n

instr jackin

JackoTransport 3, 1.0
al ef t JackoAudioln "leftin"
ari ght JackoAudioln "rightin”

; Aeolus uses M DI controller 98 to control stops
; Only 1 data value byte is used, not the 2 data
; bytes often used with NRPNs.
; The format for control node is 01lmmDggg
; mm 10 to set stops, 0, ggg group (or Division, 0 based)
; The format for stop selection is 000bbbbb
; bbbbb for button nunmber (0 based)

; Mode to enable stops for Divison |: b1100010 (98
; [this controller VALUE is a pure coincidence])

JackoM di Qut “mdiout", 176, 0, 98, 98

; Stops: Principal 8 (0), Principal 4 (1) , Flote 8 (8) , Flote 2 (10)

JackoM di Qut “mdiout", 176, 0, 98, 0
JackoM di Qut “mdiout", 176, 0, 98, 1
JackoM di Qut “mdiout", 176, 0, 98, 8
JackoM di Qut “mdiout", 176, 0, 98, 10

; Sends audio com ng in from Aeol us out

; not only to the Jack system out (sound card)

; but also to the output soundfile
; Note that in freewheeling node, "leftout"
; and "rightout" sinply go silent.

168

Jacko Opcodes

JackoAudi oQut “leftout”, aleft
JackoAudi oQut “"rightout", aright
outs aright, aleft
endin

</ Csl nstrunent s>
<CsScor e>

f 0 30

i 11 30 60 60

i 12 30 64 60

i 1330 71 60

e 2

</ CsScor e>

</ CsoundSynt hesi zer >

Credits

By: Michael Gogins 2010

169

Lua Opcodes

The purposes of the Lua opcodes are:

1. Makeit possible to write Csound code in a user-friendly, high-level language with full lexical scoping,
structures and classes, and support for functional programming, using LuaJlT (the Lua programming
language, implemented with ajust-in-time compiler and foreign function interface).

2. Require the installation of no third party software packages, or at least a minimum installation; also,
require no build system or external compilation.

3. Runreally fagt; typically, amost asfast as compiled C code, and several times faster than user-defined
opcodes.

Using the Lua opcode family, you can interact with the Lua interpreter and just-in-time compiler (lugjit)
embedded in Csound as follows:

1. Execute any arbitrary block of Lua code (the lua_exec opcode),

2. Define an opcode in Lua taking any number or type of parameters, and returning any number or type
of parameters (the lua_opdef opcode),

3. Call aLuaopcode at i-rate (the lua_iopcall opcode),
4. Call aLuaopcode at i-rate and k-rate (the lua_ikopcall opcods), or
5. Call aLuaopcode at i-rate and a-rate (the lua_iaopcall opcode).

Luais Portuguese for "moon." And Lua (http://www.lua.org) isalightweight, efficient dynamic program-
ming language, designed for embedding in C/C++ and extending with C/C++. Lua has a stack-based call-
ing mechanism and provides atoolkit of features (tables, metatables, anonymous functions, and closures)
with which many styles of object-oriented and functional programming may be implemented. L ua's syntax
isonly dlightly harder than Python's.

Luaisalready one of the fastest dynamic languages; yet Luall T by Mike Pall (http://lugjit.org) goes much
further, giving Lua a just-in-time optimizing trace compiler for Intel architectures. LuallT includes an
efficient foreign function interface (FFI) with the ability to define C arrays, structures, and other types
in Lua The speed of LuallT/FFI ranges from several times as fast as Lua, to faster (in some contexts)
than optimized C.

Example

Here is an example of a Lua opcode, implementing a Moog ladder filter. For purposes of comparison, a
user-defined opcode and the native Csound opcode that compute the same sound using the same algorithm
also are shown, and timed.. The example uses the file luamoog.csd [examples/luamoog.csd].

Example 12. Example of a L ua opcode.

<CsoundSynt hesi zer >
<Csl nstrunent s>

sr = 48000

ksmps = 100
nchnls = 1

gi began rtcl ock

| ua_opdef

170

http://www.lua.org
http://luajit.org
examples/luamoog.csd
examples/luamoog.csd

Lua Opcodes

local ffi = require("ffi")
local math = require("math")
local string = require("string")
| ocal csoundApi = ffi.load(' csound64.dl|.5. 2")
ffi.cdef[[
int csoundGet Ksnps(void *)
doubl e csoundGet Sr(void *)
struct noogl adder _t {
doubl e *out;
doubl e *inp
doubl e *freq
doubl e *res
doubl e *istor
doubl e sr;
doubl e ksnps
doubl e thermal
doubl e f;
doubl e fc;
doubl e fc2
doubl e fc3
doubl e fcr
doubl e acr
doubl e tune
doubl e res4
doubl e i nput;
doubl e i;
doubl e j;
doubl e k
doubl e kk
doubl e stg[6];
doubl e del ay[6] ;
doubl e tanhstg[6] ;
s
1]

| ocal moogl adder _ct = ffi.typeof (' struct moogladder t *")

function noogl adder _i nit(csound, opcode, carguments)
local p = ffi.cast(noogl adder_ct, cargunents)
p. sr = csoundApi . csoundCet Sr (csound)
p. ksnps = csoundApi . csoundGet Ksnps(csound)
if p.istor[0] == 0 then
for i =0, 5 do
p.delay[i] = 0.0
end
for i =0, 3 do
p.tanhstg[i] = 0.0
end
end
return O
end

function noogl adder _kontrol (csound, opcode, cargunents)
local p = ffi.cast(noogl adder_ct, cargunents)
-- transistor thernmal voltage
p.thermal = 1.0 / 40000.0
if p.res[0] < 0.0 then
p.res[0] = 0.0
end
-- sr is half the actual filter sanpling rate
p.fc = p.freq[0] / p.sr

p.f =p.fc/ 2.0
p.fc2 = p.fc * p.fc
p.fc3 = p.fc2 * p.fc

-- frequency & anplitude correction
p.fer 1.873 * p.fc3 + 0.4955 * p.fc2 - 0.6490 * p.fc + 0.9988
p. acr -3.9364 * p.fc2 + 1.8409 * p.fc + 0.9968

171

Lua Opcodes

-- filter tuning

p.tune = (1.0 - math.exp(-(2.0 * math.pi * p.f * p.fcr))) / p.thermal
p.res4d = 4.0 * p.res[0] * p.acr

-- Nested 'for' |oops crash, not sure why.

-- Local l|oop variables also are problematic.

-- Lower-level loop constructs don't crash.

p.i =0
while p.i < p.ksnps do
p.j =0
while p.j < 2 do
p.k =0

while p.k < 4 do
if p.k == 0 then
p.input = p.inp[p.i] - p.resd4 * p.delay[5]
p.stg[p. k] = p.delay[p.k] + p.tune * (math.tanh(p.input * p.thermal) - p.tanhstg[p.
el se
p.input = p.stg[p.k - 1]
p.tanhstg[p.k - 1] = math.tanh(p.input * p.thermal)

if p.k <3 then

p. kk = p.tanhstg[p. k]
el se

p. kk = math.tanh(p.delay[p. k] * p.thermal)
end

p.stg[p.k] = p.delay[p.k] + p.tune * (p.tanhstg[p.k - 1] - p.kk)
end
p.delay[p. k] = p.stg[p.K]
p.k =p.k +1
end
-- 1/ 2-sanple delay for phase conpensation
p.delay[5] = (p.stg[3] + p.delay[4]) * 0.5
p.del ay[4] = p.stg[3]

p.j =p.j +1
end
p.out[p.i] = p.delay[5]
p.i =p.i +1
end
return 0
end
1}
/*

Mbogl adder - An inproved inplenmentati on of the Mbog | adder filter

DESCRI PTI ON

This is an new digital inplenentation of the Mog |adder filter based on the work of Antti Huovil ai nen,
described in the paper \"Non-Linear Digital |nplenentation of the Mog Ladder Filter\" (Proceedings of
This inplenentation is probably a nore accurate digital representation of the original analogue filter.
This is version 2 (revised 14/ DEC/04), with inproved anplitude/resonance scaling and frequency correcti

SYNTAX
ar Moogl adder asig, kcf, kres

PERFORVANCE

asig - input signal

kecf - cutoff frequency (Hz)
kres - resonance (0 - 1).

CREDI TS
Vi ctor Lazzari ni
*/

opcode noogl adderu, a, akk
asi g, kcf, kres xin
set ksnps 1

i pi 4 * taninv(l)
/* filter delays */
azl init 0

172

Lua Opcodes

az2 init 0
az3 init 0
az4 init 0
az5 init 0
ay4 init 0
anf init 0

if kres > 1 then
kres = 1

el sei f kres < 0 then
kres = 0

endi f
/* twice the \'"thernal voltage of a transistor\' */
i 2v = 40000
/* sr is half the actual filter sanpling rate */
kfc = kef/sr
kf = kef/ (sr*2)

/* frequency & anplitude correction */

kfcr = 1.8730 * (kfc”3) + 0.4955 * (kfcn2) - 0.6490 * kfc + 0.9988
kacr = -3.9364 * (kfc”2) + 1.8409 * kfc + 0.9968
/* filter tuning */
k2vg = i2v * (1 - exp(-2 * ipi * kfcr * kf))
/* cascade of 4 1st order sections */
ayl = azl + k2vg * (tanh((asig - 4 * kres * anf * kacr) / i2v) - tanh(azl /
azl = ayl
ay2 = az2 + k2vg * (tanh(ayl / i2v) - tanh(az2 / i2v))
az2 = ay?2
ay3 = az3 + k2vg * (tanh(ay2 / i2v) - tanh(az3 / i2v))
az3 = ay3
ay4 = az4 + k2vg * (tanh(ay3 / i2v) - tanh(az4 / i2v))
az4 = ay4
/* 1/ 2-sanpl e del ay for phase conpensation */
anf = (ay4 + azb) *0.5
az5 = ay4
/* oversanmpling */
ayl = azl + k2vg * (tanh((asig - 4 * kres * anf * kacr) / i2v) - tanh(azl /
azl = ayl
ay2 = az2 + k2vg * (tanh(ayl / i2v) - tanh(az2 / i2v))
az2 = ay?2
ay3 = az3 + k2vg * (tanh(ay2 / i2v) - tanh(az3 / i2v))
az3 = ay3
ay4 = az4 + k2vg * (tanh(ay3 / i2v) - tanh(az4 / i2v))
az4 = ay4
anf = (ay4 + azb5) * 0.5
az5 = ay4
xout antf
endop
instr 1
prints "No filter.\n"
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv I'inen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
afil nmoogl adder asig, kfe, 1
out asig
endi n
instr 2
prints "Nati ve noogl adder.\n"
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv I'inen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
afil nmoogl adder asig, kfe, 1
out afil
endi n
instr 3
prints "UDO npogl adder .\ n"

173

Lua Opcodes

kfe expseg
kenv I'inen
asig buzz
afil nmoogl adderu
out
endi n
instr 4
prints
kres init
i stor init
kfe expseg
kenv I'i nen
asig buzz
afil init
| ua_i kopcal
out
endi n
instr 5
gi ended rtcl ock
i el apsed =
print
gi began rtcl ock
endi n

</ Csl nstrunent s>

<CsScor e>

f1 0 65536 10 1
i 5.1 0 1
i 4 1 20
i 5.2 21 1
i 4 22 20
i 5.3 42 1
i 2 43 20
i 5.4 63 1
i 2 64 20
i 5.5 84 1
i 3 85 20
i 5.6 105 1
i 3 106 20
i 5.7 126 1
i1 127 20
i 5.8 147 1
i1 148 20
i 5.9 168 1
i 4 169 20
i 4 170 20
i 4 171 20
e

</ CsScor e>

</ CsoundSynt hesi zer >

Credits

500, p3*0.9, 1800, p3*0.1, 3000

10000, 0.05, p3, 0.05
kenv, 100, sr/(200), 1
asig, kfe, 1

afil

"Lua noogl adder.\n"
1
0

500, p3*0.9, 1800, p3*0.1, 3000

10000, 0.05, p3, 0.05

kenv, 100, sr/(200), 1
0

“moogl adder™, afil, asig, kfe, kres
afil

gi ended - gi began
i el apsed

Copyright (c) 2011 by Michael Gogins. All rights reserved.

i stor

174

Python Opcodes

Introduction

Using the Python opcode family, you can interact with a Python interpreter embedded in Csound in five
ways:

1. Initialize the Python interpreter (the pyinit opcodes),

2. Run a statement (the pyrun opcodes),

3. Execute a script (the pyexec opcodes),

4. Invoke a callable and pass arguments (the pycall opcodes),

5. Evaluate an expression (the pyeval opcodes), or

6. Change the value of a Python object, possibly creating a new Python object (the pyassign opcodes);
and you can do any of these things:

1. Ati-timeor at k-time,

2. In the global Python namespace, or in a namespace specific to an individual instance of a Csound
instrument (local or "I" context),

3. And can you can retrieve from O to 8 return values from callables that accept N parameters.

...thismeansthat there are many Python-related opcodes. But all of these opcodes share the same py prefix,
and have aregular naming scheme:

"py" + [optional context prefix] + [action nanme] + [optional x-time suffix]

Orchestra Syntax

Blocksof Python code, and indeed entire scripts, can be embedded in Csound orchestrasusingthe{{ and } }
directives to enclose the script, as follows:

sr=44100
kr=4410
ksmps=10
nchnl s=1
pyi nit

gi Sinusoid ftgen 0, 0, 8192, 10, 1

pyruni {{
i mport random

pool = [(1 +i/10.0) ** 1.2 for i in range(100)]

def get_nunber_from pool (n, p)
if randomrandom() < p
i = int(randomrandom() * |en(pool))
pool[i] =n
return random choi ce(pool)

175

Python Opcodes

1}

instr 1

k1l oscil 1, 3, giSinusoid

k2 pycall1 "get_nunber_frompool", k1 + 2, p4
printk 0.01, k2

endi n

Credits

Copyright (c) 2002 by Maurizio Umberto Puxeddu. All rights reserved.

Portions copyright (c) 2004 and 2005 by Michael Gogins.

176

Image processing opcodes

Hereisalist of opcodes that read/write imagefiles:
» imagecreate

* imagesize

* imagegetpixel

 imagesetpixel

» imagesave

* imageload

» imagefree

177

STK Opcodes

Note

These opcodes are an optional component of Csound6. Y ou can check if they are installed
by using the command 'csound -Z' which lists all available opcodes.

The STK opcodes can be built in several ways. If you are aready building Csound, simply follow the
directions at the top of the Opcodes/stk/stkOpcodes.cpp file.

The STK family of opcodes wraps:
+ STKBandedWG
» STKBeeThree
» STKBlowBotl
» STKBlowHole
» STKBowed

» STKBrass

» STKClarinet

» STKDrummer
» STKFlute

» STKFMVoices
+ STKHevyMetl
» STKMandolin
» STKModalBar
« STKMoog

» STKPercFlut

» STKPlucked

» STKResonate
» STKRhodey

» STKSaxofony
» STKShakers

* STKSmple

» STKStar

o STKSifKarp

178

STK Opcodes

» STKTubeBell

STKVoicForm
» STKWhistle
e STKWurley

For more information about the STK opcodes, visit The Synthesis ToolKit in C++ (STK) web site at
https://ccrma.stanford.edu/software/stk.

Credits

Thisimplementation of the STK unit generators was written by Perry R. Cook and Gary P. Scavone.

The opcodes were further adapted as a plugin for Csound 5 by Michael Gogins.

179

https://ccrma.stanford.edu/software/stk

Miscellaneous opcodes

Hereisalist of opcodesthat don't fall in any category:
» system- Call an external program viathe system call.

» modmatrix - modulation matrix opcode with optimizations for sparse matrices.

180

Part Ill. Reference

Table of Contents

Orchestra OpCOAES AN OPEIEIOISccvvuueeiiti e eeeei e ettt e et e et e et e et e e e et eeeaaa s 210
D ettt e e e e e e e e e e et e et e e aaan 211
OO L. 213
21010 11 o [T PSP 217
BUNAES oo e 219
2 (0 L= TP 220
B NOES Lo 221
BN AME ..o e 222
LR PP 225
U i 227
> e et ee e eeeeeeeedeeeteeeteestieeeeieeestaeesteiestteestteeeeteeettaeeetieartaaartaaaes 229
D ittt et ee e eeeieeeeeeetteeeteeeteeeteeetaeestteeeeteeettaeeetieetaeettaeaetaaaaans 231
S ettt et e e e e e e e eeeteeeeieeeeteeeeteestteeetteeeeteeeetaeeetieaeaaaataaaes 233
o ittt et e e e e e e et e et eeeateeetaeeetaeeet e et eeatae e aaaaas 235
S PP 237
e e e e e e e e e eeteeeeieeeeteeeteeetaeeetteeeeteettaeeetieaeiaaaataaaes 240
S ettt eeeeeeeeteeaeeeaeeteeteeteesteesteetaestaeetaeettetttetntetaeetaeetae et ettt rtaeraaernaaeas 243
PP 246
D ettt ettt e e e eeeeeeteeteeteeeaeetaeeteetieetietteetaeetaettaettaeetaeteeteetaeetaertieraaraaas 249
et e e e e e e e e et e et e et e ettt eate e aaaaaas 251
D ettt ettt e e e eeteeieeeteetaeetaeeteetaeeteetaeetaeetaeetieetaeetiettae et e rtaertaeetaarnaaans 253
LA PPN 255
| PP 257
00 o PP 260
PP 263
S 264
D 266
B e e 267
PSPPSR 269
1 e ettt eeeeteeeieeeteeeeeieeeeteeeteesteestteessieeesteeestetestteesttoeettaeettaaettaaattaaaataaaes 270
B e 271
= TP 272
=01 PP 274
ot (V= S PTPRN 276
=0 L PP 280
BOOYIN et 283
BOSYNE et enaas 285
BOSYNEZ e e e et e e e ene 288
(0 (o o PPN 291
BlIASS ettt et 293
BIWEAYSON ...ttt 295
= 0107 | o I PP PPPPT 298
BMPADTS <. et 300
201001 1T | PP PP PR 302
BMPMITIT ..t 304
2= o) PRSPPI 306
=S 0] | PPN 308
= 1] PPN 310
0] 0= G PPN 312
= 0] 1< PP 314
F N S (o PP 316

182

Reference

F N IS = [0 A 320
F N IS o101 == [N 323
F AN o (015 PP 325
F N IS T 0 328
F NS T 1= o (== [331
F N IS == o [333
F N IS (== o A 337
F NS o g = o 340
N IS 1o 342
072 oo N 346
072 = 10 350
072 1011 o 1 352
072 0101070 <! 354
o] oo U110 T 356
o] 0o U1 £ 361
015t =101 N 364
0724 o N 367
o]0 1.07=" 01 T 369
o]0 1010 1 X 372
o1 2T T 375
o]0 117 377
o]0 (U7="o - P 382
o] 1o 385
o] o 387
00 =4 389
01011 o o P 391
o111 o 392
01011 o P 393
01011 1 394
0101111 o] o S P 395
01U [1<:f o) 397
0101111 o P 399
010111 | o 401
01110 403
DUZZ e 405
0724 SN 407
(0= o7 ' N 409
(o 1 (o Y/ 411
(o 1 o Y/ I 413
(0| 415
(o | 417
[0 | N 420
(07011 o 422
0= o1 PP 424
(0= 01 1Y 426
(000 [0 (o TN PPN 428
(o1 1721001 1 o 430
ChaNGE ... 432
ChaNQEOZ ... e 434
(01 170 T 437
(01 171010 1N 438
(02 o A 439
ChEBYSNEVPOLY ..o 441
(01 111014 10)G 444

183

Reference

o 0 PP 446
o010 = PP 448
(013111 0 o A 450
(o010 = PN 452
0101070 0T SRS 455
CRNPAIAIMIS .. e 457
0010 PP 458
(o211 o 461
(ot To (o J P 465
(012 (0 (0 1P 467
o= PP 469
o SR 471
o 1T o P 474
(ol (o) i PP 476
(oo (o o PP 478
o1 o PP 480
ot 101 0] D14 o (o P 482
[0 10 [0 (o TN PPN 484
o1 oo PP 486
(010001 o0 1Y SRS 488
(o0 001071 1= o= o 490
(o0 01071 1= o o P 492
(o0 0] 0T =1 494
(00001 0 1= T PSPPSR PPPR 496
(0001 01>V PP PPRPPR 499
(00] 0010t APPSR 502
o1 011 PP 505
(070 01V = PP 506
(000 01Y/0] AV PP 507
(00])Y 74 1 = o PN 511
(00])V 271 - Y 513
0001 PP 515
(001 < o [PP PPRPRPRPR 517
(o015 | o T 519
(0015 o [PP 521
0101 o PP 523
0101 1Y PSP 525
o0 15724 oo . N 527
ot 01 1101 531
ot 01 1101 1 o PP 533
ot 01 11010 1 o] o PN 535
(0: 0150 o S PP 539
o101 oo o PN 542
ot 0111 1o [545
(o¢ 1= L1 PPN 547
ot 011 PPN 550
o017 0o . N 553
(0F 1010 0 (= PSPPI 557
[0X o1 o o PPN 559
(000157 562
o (01 1 1 PP P PR UOPTR PPNt 564
(o1 1o o PP 567
o 1 PP 569
o 1 20 PP 571

184

Reference

o {1 1 573
ot {2 01 RN 576
Lot 01 1 oo P 577
0 PP 580
0 1 583
0 1P 585
o o PSRN 587
(07 1 1] o TP 589
01 0155-= 01 T 591
o (o o] o QP 593
0 (o o o o220 595
0 (0o 1 P 597
ot PP 599
o (o2 10 1Y P 601
01 PP 603
01 1 U 605
(01 607
01 1/ 610
(01 PSPPI 612
(01 o PO 614
(01 =01 PP 617
01 oS 620
(01 =10 o RN 623
(01 =0 PP 625
(0121 =10)|, P 627
01070 0 o 1 629
0 PP 631
AIOde 1aOAEreceec 633
(0T = (oY P 636
(0TS (o = 1 638
011 S o TSP 641
011 S 2P 644
0TS P 648
0TS0 PP 650
0T (o o P 652
0T (o o ot 654
[0 4 656
(007 o] o] = 658
0o 660
o (011 15" o P 661
(oL oY (= 663
(0SS o1 (- 665
(0 LSS Tz 11 o [0 PP 668
(015 T 1 RN 670
(0SS T PP 672
(0155 | 674
0 L1 1070 PPN 676
(011 13T 0] 022N 679
(011197 0] G J N 682
(01137 0] N 685
0 LIS 1 o PP 688
011 690
o111 P 692
L= 694

185

Reference

Bl BT e e e 696
=0T T PP 698
=07 T PP 700
<20 (o o T 702
L= 017710 705
L= 017710 708
< 0] 7= o 711
L= 11 PR 713
Lo 1 PSP 715
<Y< 1| PP PTPPRP 716
L= VL= 2| RN 720
LS = PP 722
EXITNOW ettt ettt ettt ettt e et et a b e e e et e et e et e e eannnn 724
L2 o PSPPI 726
L2010 BV PP 728
2L 00 PP 730
Lo o 732
Lo 1o P 734
L0 o PP P PP 736
(0 o = PP 738
Lo 015 o |« N 740
o015 e |- 742
LS8 o | PP 744
L= 0= 11 To o S U SPN 746
L= 0 (010101 1 =S 747
L=.1 (o 1 PRSP P 748
L2010 749
L= (=54 L= 751
L= =4 L= 2 N 753
L o1 PP 756
L1 1= o PP 758
L1 1= = T PR 760
111 1 01 0 K= PP 762
L= 0= N 764
L= o= PR 766
111 PP 768
11,2 Lo PP 770
L= = Y PN 772
L PP 774
1] = 2P 776
T PP 778
S 780
0L ST 782
0] 0= 784
118 [~ P 786
L1 0 PP 788
oo PP 790
L I o011 = PP 795
[I o111 (o o PPN 798
FLCIOSEBULLON ...ttt ettt e e et n e et n e et n e e e et aeeeaenns 803
[oo o PP 806
[7o 2SN 808
[I lo o | PRSPPI 809
FLEXECBULION ...ttt ettt et et e e e et e n e e e e e eeneannas 812

186

Reference

[I [S 7= o PP PTPRPTPR 815
[I (0| o PSPPSRI 816
[I 01U o] = o P 818
[e 01U o = oo [819
[0T L= PP 820
L I 01V 2 o) S UPPPSPPN 821
FLRAVSBOXSEVAIUEeuieiiii ettt e e e et e e e e s 822
L 0 PP 823
L I o PP 827
FLKNOD . e 829
L = PP 834
I o= o £ = TP 836
L 01010 PP 837
100 = P 839
L1000 2 841
L1 PP 843
[07 o 845
L I 7 o 4 = o P 848
L 07 o Q= o P 849
o 07 11 P 850
L 07 11 = oo O 854
L 7= 11 = o P 855
L 111 856
L 1011 02 857
o o | = SRRSO 858
[I o PP UPTPT 861
L IS Y = o L 862
o o PP 868
[ot 0] 1 o o PP 871
[IR =ox (]| = oo 872
LI 7N [T o PP 873
L I 12 o PP 874
[= (0o o PP 876
[I (0o o 2SR 878
I {0 | PSPPI 879
I {01 1o o [PP 881
I 1S < PP 882
L S = 0= o PPN 883
I = R 0o L] (o o PPN 885
[I I S SPPRTSPPN 886
I = (0o o PP 888
[IS oS = PPN 889
L I = = Y/ 0P 890
I AV PP 893
FLSEIV @l .. i e e e e aan 894
L 0o PSP 895
L IS [T 12 o] PP 896
L IS [T 12 o1 2 PP 900
FLSIABNKGEIHANAIE ...ttt e et e e et s e e e eaeneeaes 903
IS 101201 = PP 904
LIS 012101 | PP 905
FLSIABNKZ2SEL ...ttt et e et e e et e e e e et e e e eab e eeennnns 907
FLSIABNK2SELK ... cieeieiee ettt e e et e e et e e e e eaa s 908
I T L= PP 911

187

Reference

[I = o PP 917
[I = 0 = o [PP 923
FLEBIS BNA oo 924
[I (= 925
[I = 928
LTV ITo 7N 11 1 | PP 929
L LU To [O T 931
L LV 1To [OOSR 933
LTV 1To (@0)i {o) TP 935
LT T =g T = N 938
LU TTo | = PP 941
LU0 |\ Lo (= TP 943
LU TTo [| TR 945
FIUIAPrOgramSEIECL ... e e 948
L0 TT0 RT=) C= oA =21 oo 951
FLVAIUE .. .cecee ettt e e e e e 953
L IR =Y oo PPN 956
[IRV TTo [2] o P 957
[IRV Lo [2] o1 o PP 961
0T 1 o 963
1007107 NPT 966
L1107 968
L0010 X PP 970
L0010 =: | PP 972
L0011 TR 975
1001001 = PP 977
L1070 o PP 979
1100101 (U 981
110012707 [T PPN 983
11001770 o= SRR 985
L0000 g TSP 987
L0 NPT 989
L0, 22 PRSP 992
10 {11 (= SRR 998
L0 P 1000
0] o TR 1003
0] 1 o T RPN 1005
0] 1o 1T TR 1007
L0 1S w1 PP 1009
101 o 1 | PPN 1011
{010 | TR 1013
L0 |1 PRSPPI 1017
L0101 TR 1019
L0101 PP 1021
L1 01011 P 1023
L1 0] 1)1 PPN 1029
L= 1031
L= = 1 10T TP 1033
L= 001= 001 (= PP 1035
LSSV £ TP PPN 1037
L0 01| £ 1039
L1001V PP 1041
1001 1044
L LT PP 1046

188

Reference

10011 1048
L1001 1] 1= 1051
L1001 1110 o PP 1053
111 PP 1055
11 = o PP 1057
11 = PP 1058
4 oL 1059
L0000 o ST PP PT PR 1061
L1001 0 TP PP PP RUPTRPPT 1063
FESAMPIEDANK ...eeeiee e 1065
L2 Y ST TUPT P UPPT PP 1067
1552 Y/ SO PTTRPPIN 1069
155 PP 1070
0= 0 P 1072
o= 1 1S o L= 1074
[0 LS PP 1076
072 115 RSP 1078
[0 T= 105 [o 1080
0] 010 .74 PP 1083
[0 0= 1 = PP PP 1085
[01< 7= 11 - Y/ P 1087
01010 |V 1089
0= 10 Yo 1093
0110 | G P 1096
0T (o o 1100
01 (oo P 1102
01 7= P 1104
[0 {01 PP 1106
0= 5= <o ST 1108
00 (0] o= XSSP 1109
00 PP 1111
0 (7= T T 1113
0] =1 122 1115
0] =1 PP 1120
0110101 = N 1125
0 0 1 o PP 1128
00 o o PPN 1130
RBIMONZ ... e e et e et e e e e e e et aaane 1132
0101151 1=o PRSPPI 1135
01011 (PSP 1137
T o= o PP 1139
T o= P 1144
=" Y 1146
ROV <.t e 1150
RIEEMOVEZ ... e e e 1153
R TEVEID ..o 1156
001 - P 1159
NSDOSCI ..t e 1162
1Y PP 1165
PV S e e 1169
0175 PP 1175
01770 | 1178
PP 1180
PSP 1181

189

Reference

110 Y PSPPI 1186
[0 {0 R 1188
127 o PSPPSR 1190
L aT=TT=w (= (PN 1192
a0 1= =P 1194
L aT=T 1= 1= o (= PP 1196
=T 1= = P 1199
L= 1= Y N 1201
L gT=T0Tc =L oD = PP 1203
0= 1= 1205
1 PP 1207
101722 PP 1209
3o o PPN 1210
1o PP 1212
3 S 1213
g (ot PP 1216
1 g (o722 PP 1217
1 (o PP 1218
9] - S 1220
01 PP 1223
g1 1o PR 1225
0L PSP 1226
] N P 1227
3T PPN 1228
T PPN 1229
4o P PP 1231
3 PP TPRPPRPPRN 1232
TS = 1.1 | P 1234
INSTIODEL ..o 1237
o P 1239
1 USRS 1241
1o PP PRTPRP 1243
1= 1 PPN 1245
01772 101 P 1248
10 PP 1250
110720 SRR 1251
N = o 0 A 1 o o] 1 o PPN 1252
7= o 0 A B o [10] 1 g @0 0= (U 1253
N = Tot (oYX 1 o e [PSP 1254
JACKOAUAIOOULCONNECEuiiiiiii e e e e e e e e e e e e e e e e aanas 1255
JACKOFTEEWNEEL e 1256
JACKOINTO et 1257
= ot (o) 1 o 1 P 1259
JACKOMIAIINCONNECEecii e e e e e e e e e e e e e eaes 1261
JACKOMIIOULCONNECEiiiicii e e et e e e e e et e e e e et e e ea e e eanees 1262
= ot (o) T T @ | PR 1263
= ot (0 N[0 1 O | PR 1264
N = ot (0@ | PPN 1265
= o 0] = 11 0o TP 1266
[0 = o L PP 1267
L= PP 1269
L= 2P 1271
0221 PP 1273
J1S oL 101 1276

190

Reference

K ettt e e e e et et e e e et e et e e et e et aaees 1278
[1 SRR 1279
1 T 1 o PRSPPI 1283
00 (0 PP 1287
SRR 1289
S 110 P 1290
1= 0T - Y P 1291
o PSSP 1293
T 0 P 1295
T S 1297
T P 1299
1T 07 o PR 1301
1T 0T o | SO 1303
1T 0T (o PP 1306
T T PSP 1308
T gL o= o (o= P 1310
LT g 2 o= o = 1311
g g o= A = o L1 P 1312
1] g 2w (=" (= P 1313
INK BNADIE ...t 1315
g G ES = 0= o] =" 1317
1T g2 4= (o P 1319
T g 2 o= P 1321
T g o (o[0T = P 1323
1T gL (] o[0T AP 1325
1T =" o P 1327
1T 0= 1329
1T 0= | o P 1331
1T 0= | N 1333
TV oo 1Y U SP 1335
0TS oo PPN 1338
o= o 1341
oo P 1344
oo 1 PP 1346
oo 2P 1348
a0 11 P 1350
o (o1 Y/ P 1352
oo o T o 1= 2SN 1354
oo o T o | P 1356
oo o T = 1358
oo o T P 1361
oo o 1364
Lo o]0’ = o | o 1S P 1366
oo 55" o [1368
Fo 0] 0) 6 =" P 1370
=2 .2 1372
Lo TS == o PP 1375
Lo 1= 1270 o) o P 1378
Lo 1= o] Y PP 1381
01 PP 1384
101 o1 OSSP 1387
101 PRSP 1390
L0 0= 2 1393
10T =SSP 1395

191

Reference

Lo = P 1397
o)1 PSP 1399
0= o) o 1P 1401
0] 7= o P 1403
o0 1= o 1405
001 o 1 P 1406
o0 1= o 1 P 1408
o0 1S o 1 - P 1410
o T0 1S 1= P 1412
o L0 1S 1= 22 1414
0o 1416
0] (== o o P 1419
0= 7o P 1422
0= 7o | o P 1424
07 oS 1425
L= = = 1426
7= o o L= 1427
1 7= o | 1 1433
7= o PP TPRPRPRRY 1436
7= o PSPPI 1438
0= U 1440
7= PP 1444
0= [P 1447
0= (o 1450
QT2 - Y PP 1452
0= o P 1455
0= o o P 1458
7= PP 1461
NBXBIS ... ettt a e aaa 1463
QT2 0)= ot 1 | P 1465
T2 = ool U 0 P 1467
0= oo 1469
0= G N 1471
0T e = Y PPN 1473
00t oo P 1475
0101 P 1477
07 [0 P 1479
0= [0 P 1481
1 (o T PP PR 1483
1011 TP 1485
MIAGIODEAL ... e 1487
00 T= 4 o 1488
0T o PP 1490
0T o2 PP PPT 1492
0o T/ P 1494
MidiChanNElGftEITOUCKo e e 1496
0o [T oo o P 1498
g0 To oo 1 o] For 7= g o L= N 1501
0o o i 4 P 1503
0o [0 T 1505
00T P 1507
0T TN =S = 1510
00T T110) (=10) PPN 1511
0T T1 1) (=10 To: o1 1513

192

Reference

00101 10) =100 =Y P 1515
001 10) (=10 To o AP 1517
0T [T 1) =100 o o [1519
00T 122 1521
00T TP 1523
00T | 1526
MIdIPIECNDENG ... oeeece e e 1528
MIdIPOIYAItEITOUCK .. .oee e e e 1530
MIdiPrOGIraMCNANGE . ..vv i e e e e e e e et e e et e e et e e et e e e eeanns 1533
00T TR (= 1017 TP 1535
00 1= 2T 1537
0 P 1540
0T 7= o1 1542
AT T= 1S oot o o 1544
0= oo 1 0 P 1546
0o P 1548
00T = Y/ P 1550
0T o] PP 1552
D = = Y= P 1554
D S = = Y PP 1557
D (T (I Y= PP 1558
D 5= 0o PPN 1560
Dt L= = Y/ TP 1562
Dt (O = 1564
10700 L 1566
000 10T {1 PP 1569
010 1 (o P 1574
170 PR 1576
000 =T (o[P 1578
L pT0T0 o =T (o[2 P 1580
70700 o1 1582
110700 o1 1584
0101 o 1 P 1586
0] 25 1 o PP 1588
0] 25 o P 1590
0] 2GS o | S 1592
0] 10 =P 1594
011 01 o PP PP 1596
1010 P 1597
01 P 1599
0101 =" o 1601
10 1= PRSPPI 1603
01772) P 1605
0177 o 5 S 1607
01771 o 72 1609
01771 o1 S 1611
0177 o S 1613
D1 0 £ P 1615
00T 0 £ 1618
NCNNIS W . ee e e e e e e e e e e e eeaaaee 1620
x0T | K 1621
1S =0 o TP 1623
0] U UTSPN 1626
0] 2SRRI 1629

193

Reference

107 S 1632
10 =0 PPN 1635
1101) 1 P 1636
(910100100 (U 2 TSP 1637
(91010000 LU G TP 1639
10101 P 1641
1LY /= o o TP 1643
] PRSPPI 1646
152 1 PP 1648
15721 0 1650
10] 0 1653
11510 o 1655
111 0o 1656
00t = 1Y PPN 1658
[0 (010 1 PRSP 1660
(o110 1 o | I PPN 1663
(0110 41T |1 « PPN 1665
(0T 10 410 [1o PR 1667
o011 oo o 1670
(o= oL 1 = PP 1673
(o]0 0 L= T 1675
(01w o] 0| TR 1680
(015 o/ 1 i T 1686
(01 o1 i PP 1688
(015 w11 1 T 1690
(01 o/ 1 TP 1692
(01 o/ 1 PP 1694
(01 o1 11« TR 1696
(011 11 TP 1698
(01 o] 11 PP 1700
(015 w11 | o T 1702
(01 w11 £ PP 1704
(015 w11 PP 1706
(O O 1 1 PP 1707
(O O 11 (= o PP 1709
(O O - PPt 1713
(0 015 o o PP 1715
(011 | 2 PP 1717
(011 | PP 1718
0 (oS 1720
(010 (oo H P 1722
(o]0 1 o [P 1725
0 1726
(o]0 1 o TP 1728
0 o P 1729
(o111 1731
(010110 o P 1732
o111 P 1734
(010 |1 = PR 1736
(010 |1 (ot I TP 1738
(010 |1 (o 1739
L0101 40| N 1741
(010114 o] J 1742
o111 4o o 1744

194

Reference

outletacocovvvevviiiiiiiiinn,
QLB 1747
O 1749
O 1750
OUIBIIC o 1752
OUIEIV 1753
SRS 1754
g 1755
D 1757
e 1759
e 1761
R 1763
QUG 1765
S 1767
D 1769
S 1771
QUVEIL 1773
o ... 1775
e 1776
D o 1777
POOURIR - 1779
D 1781
B 1783
S 1785
S 1787
Py 1790
Pl 1792
By 1801
B o, 1804
By YT 1807
. 1811
By 1813
B 1815
Dy 1817
By 1819
B, 1821
B 1823
Do 1826
B gy 1829
B 1831
DD 1834
By 1837
ey 1840
peak ... 1843
B 1846
D 1848
g 1852
B 1855
AR 1859
PRI 1861
B 1863
B 1866
By 1870
B 1871
... 1874

195

Reference

pitchamdfcoooceeni.
B 1877
Dy 1880
g 1883
D 1885
By, 1887
B oy 1889
B 1893
B 1896
PONMOMLEL 1898
SR 1901
SRS 1903
B 1905
B 1908
B 1910
B 1912
ORI 1914
Dy 1916
DI 1918
R 1921
RSSO 1923
D 1925
D 1927
SRS 1929
D 1932
SRS 1934
Dy 1936
Dt 1938
B 1939
ey 1941
Db 1943
ey 1946
D 1947
DK 1950
S 1952
By 1954
B 1958
R 1960
D P 1963
D 1966
Dy 1968
e 1970
D 1972
R, 1975
B 1978
B 1980
R 1982
ey 1984
] 1986
ey | 1987
Bt 1990
B 1992
B 1994
R 1996
.. 1998

196

Reference

PVSAEMIX ..vvevvieiiieciieeei e,
Dy 2000
B 2002
By 2004
Doy 2006
e 2009
D oo 2011
By 2013
i 2015
D 2017
R 2019
R 2021
Dy 2023
TR 2025
R 2027
ORI 2028
D 2029
B 2031
By 2033
R 2035
B 2038
B 2040
RS 2041
B 2044
R 2047
D 2049
Y 2051
RO 2053
By 2055
i ... 2057
it Opcodes,.,.,.,.,.,.,.,.,.,.,.,.., ... 2059
D B 2060
Dy 2061
D ey 2065
A 2066
D ey 2069
Dy OPEOUES 2070
SRS 2072
RO 2074
) 2076
2 2078
O 2080
oY 2082
Ol 2084
OO 2086
OO 2088
S 2091
o 2094
FEACIOCK 2097
O 2099
O 2101
O 2103
O 2106
O 2109
... 2112

197

Reference

7= 0 = w0 (Y 2115
(7= 0 e = (o o H TP 2117
1= ot 124 oo | P 2119
(1= 11 PP 2121
1 17> T PPN 2123
(1500011 oo o AP PTPRPRPRN 2124
L1 0107 2125
1= o] 11 2126
1= o 2128
(15501 PR 2130
5= 0] 2132
1= 0)G PPN 2135
150100t 2137
(1550 0 Y PP RPRPRPPR 2139
1530 V4P 2141
L1553 T PP PRRP 2144
(00 P 2146
(=YL= 1 o TP 2147
(=YL= 4 02T 2149
(=YL 1 01 PSP 2150
FEWINOSCOIE .. iveit et e e ettt e e e et e et e et et et e e et e et e et e et e et e aaesaneeaneeaeees 2152
15727 PSPPI 2154
1 PSRN 2156
1 TP 2158
o) o 2160
10 101 o TP 2161
015 2163
100 TP 2165
107 1 3 PP 2167
011 o PP 2173
=01 0T N 2175
(100 o PPN 2177
PPN 2179
LY IS o PSP 2180
L Y24 o} P 2182
SAMPRNOIA ..ee e 2184
LSS 110 010 L= 2186
L= o= | TP 2188
LS o= =2 14 - 1Y PP 2190
LS o= 10T 0= PP 2192
S0 1 P 2193
LSz 1417 o) [P 2197
LS o= 11 10 TP 2199
LS 0= | = o PR 2201
SChEAKWRNENNAMEDviiieii e e e e e 2204
LS 0= LU TP 2206
LS 0= 1Y 1= o [P 2209
[0 (= 11T 2211
LS 0] (= 11 0 PPN 2213
LS o = o P 2215
LS ol = o (1 o 2217
LS ol 0= o 2219
LS o 1 o 2221
£ o [P 2223

198

Reference

1SS G (= 2225
LSS = o OSSP 2227
LSS 101100 P 2229
S 0 PR PPPPP 2231
S S 115 Y P 2232
1SS = 1S 7=o 1 P 2236
1SS T 1 = PN 2238
SEMTAIFIUSN e e 2239
1SS T T PPN 2240
SEMTAIREAD ... e 2241
1S LT AT = P 2243
1SS T AT 2244
S S0 (1] 12 2246
LSS0 (1] P 2249
LS o 1 4 P 2252
LSS (1] 01N 2255
S {01 PP PP 2257
S S S o0 (= 0L 2259
LS] PSP 2261
LS TS 1 2263
LS TS] PPN 2266
11 P 2269
LS LTS 1 0 2272
LS o P 2274
£ oo o= 2277
LS 07255 Mo | TP 2280
LS 0] = Y2 T 2283
LS o] = 1Y o TP 2286
LS o] = Y 2289
LS 0] = Y7 2 P 2291
LS o) P 2294
LS = 2296
LS 7= = PSPPSR 2299
LS 0T] PP 2301
LS T | PP 2303
LS o 0 o 2305
S o PP 2307
LS 1 PP 2309
LS T Y PP 2311
LS 1153 1 2313
SOIGNDEIIS ..t e et 2315
LS o= - Y 2317
LS T (<o PSPPSR 2319
LS T 1= o1) P 2321
LS T (< G = o = PP 2323
S Lo (< G = o =, PP 2325
LS T (< 72U 2327
LS T 1< 724 P 2329
LS T (< e i = o = P 2331
S Lo (< C i = o =, ORI 2333
LS T (< PP 2335
LS T (= PP 2337
SHAEIBALADIE .. .cee e 2339
SHAErBALADIEf ...t e e e aae 2341

199

Reference

LS T (< PP 2343
LS T (= PP 2345
1S TT0 = 51 =1 o] = TP 2347
LS T (< 21z o] = PRSPPI 2349
LS TT0 = (= L7 P 2351
1S 07 | oo o PP 2352
LS 010 1T o 2354
LS 010 V7= o1 P 2358
LS00 1= o 2362
LS00 S = o N 2364
LS 0] - PP TPRPRPRN 2366
S 1 (o P 2367
LS T 1 o PP 2368
S 0 o PP PRPPRP 2371
LS 7= 11 o [PSPPI 2376
LS 7= 11 o PSPPSRI 2385
LS 7= 11 o | PSPPSRI 2389
LS oo = PP 2394
LS 07=07= o [0 1.0 2398
S 0= [i P 2399
LS 0= 1= o T 2400
LS 0= o 1 1 2401
S 0= 111 P 2402
S 0= 0 11 2403
S 0= = o P 2405
S 0 o= 1 1 PSPPSR 2406
S 0o 1 11 0 L PP PP 2407
S oL o P 2409
0110 PPN 2411
S 0111 P 2413
S 015 <010 2415
S | PPN 2418
S PSPPI 2420
S =, = | P 2422
S [PP PPP 2424
STKBANAEAWGoeiieiii et e e et e e e e et a e e e et e e e eeteaeaees 2426
S 142 =T 1 1= TP 2428
Y 11421 1611 = o1 PP 2430
Y I 1 = o VT o] = N 2432
Y 112101 PRSPPI 2434
Y 1 2] == TSP 2436
] 1N I 1] 0= ST SPPIN 2438
SIS 1010 1 TP 2440
IS 1 LU 1= PP 2442
Y I 1 5 Y A0 o= U 2444
STKHEVYMEL ..o et e et e e e et e e eaenns 2446
Y I 11, = 1 (o] 1 o 2448
STKIMOUAIBA ...t e e e e et e e et e e et e e e et e e e eaenns 2450
STIIMOOQ ittt ettt e e e e e 2452
Y 11N = £ [P 2454
Y 1N 111 (= o OSSPSR 2456
S B SR (= 0] 0 PP 2458
STKRNOUEYeeeiiii e e e e e et e e e e e 2460
S IS v 0] 1 Y/ 2462

200

Reference

S I 6 112 = £ PPN 2464
Y I 1S 1101 P 2466
S I S - PP 2468
Y I 1S (11 T PPN 2470
STKTUBEBEI .. .ceiiii e e e e 2472
S I Qo e =) 1 o E PP 2474
STRKWRISHIE . vt e e 2476
Y I 1L L0 L= N 2478
LS (ol 17 TR 2480
LS (ol 7 14 TR 2482
S o)Y PP 2483
LS 11 0) Y7 2484
S0 | P 2486
LS (o= 1 TP 2488
S o 1 0] PR 2490
LS 1010 P 2492
LS == o 2493
L= (g (o010 T PP 2495
S 0 . PP PRPPRP 2497
LS U100 (= TR 2499
LS U100 (= PR 2500
LS (1= o TRt 2502
LS 1= 01T 2503
LS (Lo 1 PP 2504
S OWEIK vt 2506
LS L] 10 (= PP 2507
LS L] 310 Lo P 2509
LS (£ PPN 2510
LS U= U o TP 2512
LS TS U o] P 2514
LS [(oo IR 2515
LS (0o | PR TPTN 2516
L= [(o PP 2517
LS [(o TP 2518
LS L]0 0 PP 2519
LS U010 0= PSP 2520
LS o1 0 1 ST 2521
L o1 0= T PRSP 2524
LS 0 2525
SUIMIBITEY vttt te et e e e et e e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e et e e 2527
LN 1 = PPNt 2529
LS Yot =1 2532
LS Y100 TP 2535
LS Yo o] 7= o 2537
LS [0 PPN 2541
11 o TP 2543
L= o TR 2546
1= o 11 (o [N 2548
1= | [T PR 2550
L= | [S PP 2552
L= 0] 1= ot oY 2553
1= o [{11 (= ST 2556
1= [11 (= o TP 2558
1= 0] =0 1 N 2560

201

Reference

1210 = PSP 2561
1= 0] 1= o1 oY PPN 2564
1= 0] =0 P 2565
122 o] =] SRS 2566
122 o)L= 0 11 SR 2569
L2210 = PP 2571
12210 =T PR 2575
L= o)L= 1 1 PSPPSR 2578
L= o] = oo [2580
1= 0] = - 1 2582
L= 0= <o PSP 2585
TADIESNUTTIE L. e 2587
122 o)L= PP 2590
1= 0] 1= 11V P 2593
FBIIBWKE .o 2596
L2210 =S PSPPSR 2598
1210 1= <o [P 2601
TAOMOTPN e 2603
TADMONPNA ... 2606
tADMOIPNEK ... e 2608
TADMOTPNI ... e 2611
1= 0] - Y 2614
7= 0] (= o2 2615
1= 015 1 0 PPN 2616
16210224 01V 3P 2618
122100107001 1 o= 2619
21 PP 2621
L2210 0 PSPPSR 2623
L= 00 P 2625
L6210 01 2P 2627
1107 o PP 2629
L0017 P 2632
L1010 P 2635
L= 001070 o | 2637
1= 0019707 RSP 2639
L1 (0.0 PPN 2641
L0010 S o [P 2643
L0001 11 | P 2646
110001 11 £ P 2648
L1001 OSSP 2650
L] 01 PP PPPPP 2652
L1 00 L | PP PRSP 2655
1Y | 2657
11121 (o 2659
L] PP PPEPRPPIN 2661
10 0= P 2663
L] 11 PP PP 2665
L1107 (o] o 1 PP 2667
L0 Y [2669
LU= =0 PP 2671
L 0 < | o 2673
L= 5= PSPPI 2675
L0 1015 T PP PP 2677
L1111 (= P 2679

202

Reference

10120 == P 2681
10 0= PN 2683
1005 P 2685
1] =" T PPN 2689
10 L0 == P 2691
111107 N 2693
LS o7 | 1 T PPN 2695
L1 0 PSPPI 2697
LS o] 11 2699
L0 0T P 2701
L0 070 2 2703
L8 T o PP PPN 2706
(4100 1Y PP 2707
01011 oo P 2709
]SSPSR 2711
8101007 =0 PP 2713
(810752 10 01 o PP 2716
=101 (o] o 2718
o P 2721
A2 o1 1 (o) 2724
1o o PR 2726
1 o o [P 2729
1= o o P 2731
A= o o 1V PP 2734
A= o = SRR 2736
A 0PN 2739
A= <. P 2742
VB e 2744
(4 07=T0) 11010 Y= 2747
1 070 o N 2750
A 0= o0 1070V T PP 2753
VDBDLO ..o e 2756
A 0= o)1 T30 YU 2758
VDB e 2760
A 0T=T 072 00 Y= PP 2763
VB8 e 2766
A 0= 012 100V T PPN 2768
(407" o] S 1 T N 2771
A 070 P 2774
VBOBPZIMOVE ...ceecee e e 2776
A 1 - P 2778
LYoo T PRSPPI 2781
Lo PP PP 2784
100 72 2788
AL Y22 i 2790
1L Y22 1 1 2792
A7 22 o TP 2795
VCOPY tttttte ettt et e e e et e e 2798
LTl oY P 2801
1 L= - Y ST 2803
A0 L= = Y2 USRS 2805
Ao 1= - PP 2807
AL 1= - (o U 2809
Ao 1= 2811

203

Reference

A 1= LY P 2813
AL 1= o 0 ALY o PPN 2815
(L0 1= o LT 2817
A L= = 1Y PSPPSRI 2819
10T AP 2820
ALY A N 2823
A= o = - LY 2825
AL oSSR 2826
LV o PP 2828
AV o PP 2831
AV (0 o TP 2833
AT 0V PP PPPPP 2835
(=24 0.V P 2838
VIS e 2840
1Y o P 2842
11 o= o PP 2844
AV PP 2846
AT 03 P 2849
AL 0= PPN 2850
VOIS L.ttt e et e e et e e e et e et e e e et e aae 2852
L7707 o PP UP PP 2854
1Y 01T 1 PPN 2856
221 2857
18210 P 2861
148210 P 2863
A48 210 Y P 2866
[V0 T TP 2868
AV0 = T o PP 2871
(0] 7= S =S o 2876
L7700 PPN 2878
VPOW ettt ettt et an 2879
A7 00 PR 2883
VPOWVY ettt ettt et et et e e et e et et e et e e et e e r et e et r et e e e r e e e e e e et 2886
A 010 1Y P 2889
A7 0o o PRSPPI 2891
1 =20 | o PSP SPPN 2894
1Y =00 S 2897
(VA = 0o o Y 2= =10 o oo 2900
VSEDANKIOBAee 2902
AT (o [SO PUTSPP 2903
A T PSP 2905
AV 1 Lo TP PP PTRPPP 2907
L2 (41T o T | PPN 2909
LT 10 TP 2911
VSIPAramMSEL VSIPAIAMIGEL ...ov i 2913
AV 0] (00 S < PP PRPRNN 2915
A5 T P 2916
A2 U PP 2919
1= o =1 PR 2921
1= o = P 2923
1V = o = PP 2925
(Y= o = PPN 2927
1= o = T PR 2929
AV = o = T PRI 2930

204

Reference

(VA= o = 1= PP 2932
1= o PP 2934
1= o P 2936
1V = o 7= LSRRI 2938
A 01 P 2940
A 011 PPN 2941
A 011 PPN 2942
A= o PP 2943
(= === < S PP 2944
WEDSOCKEL ...ttt e 2946
1T 7= oL 2948
1T o o0 PPN 2951
WODOWEDEAEeii e e e 2953
10 0= 2955
1T o o - P 2957
1T 1 0= N 2959
1T oL xR 2961
1T oL Tox 22N 2964
10 8 o L= P 2966
1T 8 o L= PP 2969
WL Lo e 2972
LT l0 = OO 2974
171 = = PSP 2976
1T L= P 2979
LTS = 0 PP 2980
1T (o PP 2982
11T = PP PP PRPPIN 2985
L= = [o SR 2987
1= £ =1 o PP 2989
D= 0 L S P 2991
(L PP PR 2993
(0] | PP 2995
D 7= 11T 1 L P 2997
D = 5 1 7= o PSPPI 3000
D o= PP 3001
D 0= 1 PR 3005
D1 = 1] 0 PSPPSRI 3009
D440 3013
DS o | 1 3015
. 'o: P 3017
2| (1 111 S SPPTSPPPI 3019
2 10 110 R PSP 3022
2 | S PTRSPPPI 3024
2 £ o R PP 3026
2 1 P 3028
2 11 0 TP 3030
0| 1 o - S 3033
.40 | 0 o LT 12To o L= P 3035
40| S22 ¢ 3037
ZAE 2P0IE MOAE . .oeeiei e 3039
P20 | =" [0 = S P 3041
A 1L = 2P 3043
2 | PP 3045
P 3047

205

Reference

4 1LY/ 0 PP UPRPPRP 3049
2 (o PP 3051
2 (2700 SRS 3053
2 PP 3055
. Q11T P 3057
311 2 3059
Score Statements and GEN ROULINESuiiiiiiieiiiiii e e e e e e eaan e eeaees 3062
SCOME SEALEIMENLS ...ttt ettt e e e e et e et e et e e e e e e e e e e e eneenns 3062
a Statement (0r AdVanNCe SEAEMENT)iiiinieii e e e e e e e e e e e e e et eeaaaeee 3063
D SEAEMENE ...t aaaa 3065
OIS = =111 o | PSPPSR 3067
d Statement (De NOte SEAEMENL)oviviiiiiieiie e e e e e e e e e e e aneees 3069
LSS = (<01 0| PP 3071
f Statement (or Function Table Statement)ccoovviviiiiiiii e 3073
i Statement (Instrument or NOte StAEEMENT)euiiiiiiiie e e 3075
m Statement (Mark SEatEMENL)uiiii e 3079
(IS = = 011 o | PP PP 3081
(0[S = 11 o | PPN 3083
r Statement (REPEat SEAEMENL)viveiiiici e e e e e e eaas 3085
STz (11 | PP 3087
t Statement (TEMPO SLAEMENL)ivvniii e e e e e e e e e aaeees 3089
VRS = (< 10T o | PP PTPTN 3091
DS £ (= 1 0= | TP 3093
y Statement (Or Seed SEALEMENL)cvveirii e e e e e 3095
S = = 1 1= | 3097
S = 1.1 | 3100
GEN ROULINES ...ttt et e e e et e e e et e e e et e e e eaan s 3100
LN PP 3104
GENDZ <.t 3107
L 1N PP 3109
GEND e 3112
L N0 PP 3115
GENDB ..ottt 3117
LN PP 3119
GEND ..ttt 3121
GENDD L.t 3123
GENLD L.t e s 3126
L N PP 3128
LN PP 3130
LN PP 3133
GEN LA e e 3137
GEN LD L. e 3140
L N PP 3148
L TN PP 3151
GEN L L.t 3153
GEN LD L. et 3156
GEN 20 <.ttt 3158
GEN 2L <. 3161
GEN 23 L e s 3165
GEN 2 . e 3167
GEN 2D .t 3169
GEN 27 e s 3171
GEN 28 .t 3173
GEN B0 ettt et 3176

206

Reference

GEN B L et 3178
GEN B e s 3179
GEN B e et 3181
GEN B e e 3184
GENAD L. 3187
GEN L L. s 3189
GEN2 . s 3191
GEN S . e 3193
GEN L. e 3194
LN PP 3196
GEN D .ttt 3199
GENLANN L. e 3202
L€ N o PSP 3204
GENSONE ...ttt et et ettt e e e enas 3206
L€ Lo 1170 o =4 = S 3208
GEN BB ettt e aaes 3211
GENWEVE ..t e e e e et e e et e s 3216
GENPBASYNTNcvec e e e 3219
Experimental Orchestra Opcodes and GEN ROULINESccuvviiiieiiiieiiiieciieeeeee e e 3223
Experimental Orchestra OPCOUESuuiiiiieii e e e e e e e een 3223
o = P 3224
CUAASYNIN .. e e 3227
(ot 8 (0 = S o (1 0 U 3229
Deprecated Orchestra Opcodes and GEN ROULINEScccuuiiiiiiiiieiiiiecieee e ee e e e e 3231
Deprecated Orchestra OPCOUEScuvuiiiii e e e e e 3231
BDELAIAN ... e 3232
=1 0CTq o [P 3233
o7z L1 (o 0 3234
0] - 1 3235
20 = 1 PPN 3236
=T (00 0] o 1= U 3237
BlINTANG ..o e 3238
o Tor 1[0 0|V P 3239
=100 1SS o PPN 3240
=0 Y PP 3241
= = Y P 3242
(=0 To P 3244
=0 o= Lo PSP 3245
BIVEIDUIL .o e aaaa 3246
[0]707100 1= oSSR 3247
0]70 101 oo S PP 3249
oo P 3251
1= P 3252
] o772 = o [P 3254
] 07=q o 1o P 3255
o= 18 o 0 3256
1 P 3257
04 2 PP 3258
14 PSP 3259
L= o] = o P 3260
0 =01 3261
1 1= o P 3262
14T Lo P UPPRPPP 3263
14T L o722 PP 3264

207

Reference

............................... 3265
TIICT o o
K o 300
IS S
O 3o
O 320
O S
O S
O e
JOUIGLA e o
UG ot
JOUIDEE 3275
JOUIDD) - a0
O Sl
IPOBUICIY - are
IPOISSON S
G S
S S
S 302
T 300
T2 S0
SOEMOA v 300
SIGEME e 0
HEDIEOORY 0!
EDIEIDI S
DI 300
A S
AN oo S
URIANE e 3
WD oo 3o
KDOIBTATL e oo
KOGKPITI oo o
OBLIONY 2
KOUITIDZ S
OUIMPS o S
OUIMR 3
KAUMD - oo
KEXDIBIL o
KIEIZ e B
OBLSS S
KINANE oo o
D B
O 200
KOUICL oo oo
O oo
OUIPEL 3
KOUIPD oo oo
KOUIPE oo
KPOBUICTY - e
KPOLSEOM B
D oo
D o
KOS oo
KIOE e o
KIBAO ...ovi e

208

Reference

Q01T PP 3319
Q1= 2 o PP 3320
1T =2 o ORI 3321
KWEIDUIL ..o e e et e e e e e e 3322
LS 010 o PRSPPI 3323
PEAKK ..ttt e e et e a e 3325
60 o PP 3326
0o T 3328
010 o PP 3329
010 o PSP 3331
LS o0 01 (o 11 | AP 3332
LS00 0T (o 11 (=P 3334
S = oS 3335
Deprecated GEN ROULINESiiiiiieiiiei e e e e e e e e e e e e e e e e e e et e e et e e eeanns 3336
GEN 22 . s 3337
The ULty PrOgraMS . ouu e e e e e e e e e e e e e et e e e e e eaa s 3338
(D1 oi (0] 1= PR 3338
SOUNAFITE FOMMALS. ..vviieeiii et e et e e et e e et 3338
Analysis File Generation (ATSA, CVANAL, HETRO, LPANAL, PVANAL) 3339
File QUEres (SNDINFO)cccuuiieiiiii e e et e eeeae e ees 3349
File Conversion (HET_IMPORT, HET_EXPORT, PVLOOK, PV_EXPORT, PV_IM-
PORT, SDIF2AD, SRCONV) ..ottt ettt e 3350
Other Csound Utilities (CS, CSB64ENC, ENVEXT, EXTRACTOR, MAKECSD,
MIXER, SCALE, MKDB) ...uiiiiiiiiiiiiiiii ettt e e e e e 3367
L0 oo PP P PP 3381
Events, Lists, and OPEralionScc.uuiiiinieiieeiiier e e e e e e e et e et e e et e e e e e aanas 3381
Writing a Cscore COoNtrol Programvcvueeii e e e e e e e e e e e s e e e e eaneees 3384
Compiling @ CSCOME PrOgramciuieeii e ee e e e e e e et e e e et e e et e e et e e aaeeeens 3388
More AdvanCed EXAMPIESiiiiieii e 3391
L0 o= £ 3PP 3393

209

Orchestra Opcodes and Operators

210

Orchestra Opcodes and Operators

I=— Determinesif one valueis not equal to ancther.

Description

Determinesif one valueis not equal to another.

Syntax
(al=Db ? vl : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditional, a and b arefirst compared. If theindicated relation istrue (a not equal to b), then
the conditional expression hasthe value of v1; if the relation isfalse, the expression has the value of v2.

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :)
are weaker than the arithmetic and logical operators (+, -, *, /, && and |]).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
compl ete statements themsel ves.

Examples

Here is an example of the != operator. It uses the file notequal .csd [examples/notequal .csd].

Example 13. Example of the != operator.

See the sections Real -time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,unconment -iadc if realtinme audio input is needed too
For Non-real tinme ouput |eave only the line bel ow

; -0 notequal .wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

instr 1

i pch = cpspch(p4)

211

examples/notequal.csd
examples/notequal.csd

Orchestra Opcodes and Operators

iprint = p5
if (iprint !'= 1) goto skipPrint
print ipch

asig vco .7, ipch, 2, 0.5, 1
outs asig, asig

ski pPrint
endin
</ Csl nstrunent s>

<CsScor e>
f 1 0 65536 10 1 ;sine wave

this note will print it's ipch value and only this one will be played

S
+ + 0
GRGRS]
© © ©
I8
N RO

e
</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like this:

instr 1: ipch = 277.167

See Also

212

Orchestra Opcodes and Operators

#define

#define — Defines a macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system
in Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save
typing, and can lead to a coherent structure and consistent style. Thisis similar to, but independent of, the
macro system in the score language.

#define NAME -- defines a simple macro. The name of the macro must begin with aletter and can consist
of any combination of letters and numbers. Case is significant. This form is limiting, in that the variable
names are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a' b' ¢') -- defines a macro with arguments. This can be used in more complex situations.
The name of the macro must begin with aletter and can consist of any combination of |etters and numbers.
Within the replacement text, the arguments can be substituted by the form: $A. In fact, the implementation
defines the arguments as simple macros. The names may be any choice of letters. Remember that caseis
significant in macro names.

Note

In earlier versions of Csound there was a limit of 5 arguments, but this restriction was re-
moved in 2011; memory isthe only constraint.

Syntax

#define NAME # repl acenent text #

#define NAME(a'" b' c') # replacenent text #

Initialization
replacement text # -- The replacement text is any character string (not containing a #) and can extend

over multiplelines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, asthey can sometimes do strange things. They take
no notice of any meaning, so spaces are significant. Thisiswhy, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this smple macro system
isapowerful concept, but it can be abused.

Examples
Here is asimple example of the defining a macro. It uses the file define.csd [examples/define.csd].

Example 14. Simple example of the define macro.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

213

examples/define.csd
examples/define.csd

Orchestra Opcodes and Operators

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/mdi flags here according to platform
Audi 0 out Audio in No nmessages

- odac -iadc -d ;s RT audio 1/0
For Non-real tine ouput |eave only the line bel ow
-0 define.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

Initialize the global variables
sr = 44100
kr = 4410
ksnmps = 10
nchnls = 1

Define the macros.
#def i ne VOLUVE #5000#
#def i ne FREQ #440#
#defi ne TABLE #1#

I nstrunent #1
instr 1
Use the nmacros.
This will be expanded to "al oscil 5000, 440, 1".
al oscil $VOLUME, $FREQ, $TABLE

Send it to the output.

out al
endin

</ Csl nstrunent s>
<CsScor e>

; Define Table #1 with an ordi nary sine wave.
f 10 32768 10 1

; Play Instrunent #1 for two seconds.
i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like this:

Macro definition for VOLUME
Macro definition for CPS
Macro definition for TABLE

Here is an exampl e of the defining a macro with arguments. It usesthe file define_args.csd [examples/de-
fine_args.csd].

Example 15. Example of the define macro with arguments.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/mdi flags here according to platform
Audi o out Audio in No nmessages

214

examples/define_args.csd
examples/define_args.csd
examples/define_args.csd

Orchestra Opcodes and Operators

- odac -iadc -d ;o RT audio 1/0
; For Non-realtime ouput |eave only the Iine bel ow
; -0 define_args.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

; Initialize the gl obal variables.

sr = 44100
kr = 4410
ksmps = 10

nchnls = 1

; Define the oscillator nmacro.
#def i ne OSCMACRQ(VOLUME' FREQ TABLE) #oscil $VOLUME, $FREQ $TABLE#

;o Instrument #1

instr 1
. Use the oscillator nmacro.
; This will be expanded to "al oscil 5000, 440, 1".
al $OSCVACRO(5000' 440' 1)

; Send it to the output.

out al
endi n

</ Csl nstrunent s>
<CsScor e>

; Define Table #1 with an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrunent #1 for two seconds.
i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like this:

Macro definition for OSCMACRO

Predefined Math Constant Macros

New in Csound 5.04 are predefined Math Constant Macros. The values defined are those found in the C
header math.h, and are automatically defined when Csound starts and available for use in orchestras.

Macro Value Equivalent to
$M_E 2.7182818284590452354 e
$M_LOG2E 1.4426950408889634074 log_2(e)
$M_LOGI10E 0.43429448190325182765 log_10(e)
$M_LN2 0.69314718055994530942 log_e(2)
$M_LN10 2.30258509299404568402 log_e(10)
$M_PI 3.14159265358979323846 pi

$M_PI_2 1.57079632679489661923 pi/2
$M_PI_4 0.78539816339744830962 pi/4

215

Orchestra Opcodes and Operators

Macro Value Equivalent to

M 1 Pl 0.31830988618379067154 1pi

$M_2 PI 0.63661977236758134308 2/pi

$M_2 SQRTPI 1.12837916709551257390 2/sqrt(pi)

$M_SQRT2 1.41421356237309504880 sqrt(2)

$M_SORT1 2 0.70710678118654752440 Vsgrt(2)
See Also

SNAME, #undef

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

April 1998

Examples written by Kevin Conder.

New in Csound version 3.48

216

Orchestra Opcodes and Operators

#include

#include — Includes an external file for processing.

Description

Includes an external file for processing.

Syntax

#i nclude “fil enane”

Performance

It is sometimes convenient to have the orchestra arranged in a number of files, for example with each
instrument in a separate file. This style is supported by the #include facility which is part of the macro
system. A line containing the text

#i nclude "fil enane”

where the character " can be replaced by any suitable character. For most uses the double quote symbol
will probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. Note: Csound
versions prior to 4.19 had alimit of 20 on the depth of included files and macros.

Another suggested use of #includewould beto define aset of macroswhich are part of the composer'sstyle.

An extreme form would be to have each instrument defines as a macro, with the instrument number as a
parameter. Then an entire orchestra could be constructed from a number of #include statements followed
by macro calls.

#i nclude "clarinet"
#i ncl ude "flute"

#i ncl ude "bassoon"
$CLARI NET(1)
$FLUTE(2)
$BASSOON(3)

It must be stressed that these changes are at the textual level and so take no cognizance of any meaning.

If the version of Csound is built with the CURL library the filename in an #include statement can be an
URL, recognised by including the substring "://" in the name. This will include text via protocols such
as http, https, and ftp.

Examples

Hereisan example of theinclude opcode. It usesthefileinclude.csd [examples/include.csd], and tablel.inc
[examples/tablel.inc].

Example 16. Example of the include opcode.

217

examples/include.csd
examples/include.csd
examples/table1.inc
examples/table1.inc

Orchestra Opcodes and Operators

/* tablel.inc */

Tabl e #1, a sine wave.
f 10 16384 10 1
/* tablel.inc */

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform
Audi 0 out Audio in

- odac -iadc ;o RT audio 1/0
For Non-real tinme ouput |eave only the line bel ow
-0 include.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
kr = 4410
ksmps = 10

nchnls = 1

Instrunent #1 - a basic oscillator

instr 1
kamp = 10000
kcps = 440
ifn =1

al oscil kamp, kcps, ifn
out al
endi n

</ Csl nstrunent s>
<CsScor e>

Include the file for Table #1
#include "tablel.inc"

; Play Instrunent #1 for 2 seconds
i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

April 1998

Example written by Kevin Conder.
New in Csound version 3.48

URL s available from Csound 6.02

218

Orchestra Opcodes and Operators

#undef

#undef — Un-defines a macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system
in Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save
typing, and can lead to a coherent structure and consistent style. Thisis similar to, but independent of, the
macro systemin the score language.

#undef NAME -- undefines amacro name. If amacroisno longer required, it can be undefined with #undef
NAME.

Syntax

#undef NAME

Performance

Some care is needed with textual replacement macros, asthey can sometimes do strange things. They take
no notice of any meaning, so spaces are significant. Thisiswhy, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this ssmple macro system
is apowerful concept, but it can be abused.

See Also

#define, SNAME

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

April 1998

New in Csound version 3.48

219

Orchestra Opcodes and Operators

#ifdef

#ifdef — Conditional reading of code.

Description

If amacro is defined then #ifdef can incorporate text into an orchestra upto the next #end. Thisis similar
to, but independent of, the macro systemin the score language.

Syntax

#i f def NAME
#el se

#end

Performance

Note that the #ifdef can be nested, likein the C preprocessor language.

Examples

Here is a simple example of the conditional.

Example 17. Simple example of the #ifdef form.

#defi ne debug ##
instr 1
#i f def debug
print "calling oscil"
#end
al oscil 32000, 440,1
out al
endi n

See Also

$NAME, #define, #ifndef.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

April 2005

New in Csound5 (and 4.23f13)

220

Orchestra Opcodes and Operators

#ifndef

#ifndef — Conditional reading of code.

Description

If the specified macro is not defined then #ifndef can incorporate text into an orchestra upto the next #end.
Thisissimilar to, but independent of, the macro system in the score language.

Syntax

#i f ndef NAME
#el se

#end

Performance

Note that the #ifndef can be nested, like in the C preprocessor language.

Examples

Here is a simple example of the conditional.

Example 18. Simple example of the #fndef form.

#define final ##
instr 1
#i f ndef final
print "calling oscil"
#end
al oscil 32000, 440, 1
out al
endin

See Also

$NAME, #define, #ifdef.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

April 2005

New in Csound5 (and 4.23f13)

221

Orchestra Opcodes and Operators

$SNAME

$NAME — Calls a defined macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system
in Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save
typing, and can lead to a coherent structure and consistent style. Thisis similar to, but independent of, the
macro systemin the score language.

SNAME -- calls a defined macro. To use a macro, the name is used following a $ character. The name
is terminated by the first character which is neither aletter nor a number. If it is necessary for the name
not to terminate with a space, a period, which will be ignored, can be used to terminate the name. The

string, SNAME., is replaced by the replacement text from the definition. The replacement text can aso
include macro calls.

Syntax
$NAVE
Initialization
replacement text # -- The replacement text is any character string (not containing a #) and can extend

over mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, asthey can sometimes do strange things. They take
no notice of any meaning, so spaces are significant. Thisiswhy, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this smple macro system
isapowerful concept, but it can be abused.

Examples
Hereis an example of the calling a macro. It uses the file define.csd [examples/define.csd].

Example 19. An example of the calling a macro.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform
; Audi o out Audio in No messages

- odac -iadc -d ;o RT audio 1/0

; For Non-realtime ouput |eave only the Iine bel ow

; -0 define.wav -W;;; for file output any platform

</ CsOpti ons>

222

examples/define.csd
examples/define.csd

Orchestra Opcodes and Operators

<Csl nstrunent s>

; Initialize the gl obal variables.
sr = 44100

kr = 4410
ksmps = 10

nchnls = 1

; Define the nacros.
#defi ne VOLUVE #5000#
#defi ne FREQ #440#
#define TABLE #1#

I nstrument #1
instr 1
Use the macros
This will be expanded to "al oscil 5000, 440, 1".
al oscil $VOLUME, $FREQ $TABLE

Send it to the output

out al
endin

</ Csl nstrunent s>
<CsScor e>

Define Table #1 with an ordinary sine wave
f 1 0 32768 10 1

Play Instrument #1 for two seconds
i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like this:

Macro definition for VOLUME
Macro definition for CPS
Macro definition for TABLE

Here is an example of the calling a macro with arguments. It uses the file define_args.csd [examples/de-
fine_args.csd].

Example 20. An example of the calling a macro with arguments.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/mdi flags here according to platform
Audi o out Audio in No messages
- odac -iadc -d ;3 RT audio 1/0
For Non-real tinme ouput |eave only the line bel ow
-0 define_args.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

; Initialize the gl obal variables
sr = 44100

kr = 4410
ksmps = 10

223

examples/define_args.csd
examples/define_args.csd
examples/define_args.csd

Orchestra Opcodes and Operators

nchnls = 1

Define the oscillator nacro.
#def i ne OSCMACRQ(VOLUME' FREQ TABLE) #oscil $VOLUME, $FREQ $TABLE#

I nstrument #1
instr 1
Use the oscillator nacro.
; This will be expanded to "al oscil 5000, 440, 1".
al $OSCVACRO(5000' 440' 1)
Send it to the output.

out al
endin

</ Csl nstrunent s>
<CsScor e>

Define Table #1 with an ordinary sine wave.
f 1 0 32768 10 1

Play Instrument #1 for two seconds.
i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include aline like this:

Macro definition for OSCVMACRO

See Also

#define, #undef

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

April, 1998

Examples written by Kevin Conder.

New in Csound version 3.48

224

Orchestra Opcodes and Operators

%

% — Modulus operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it asitsleft or right argument, asin

atb*c

In such cases three rules apply:

1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)

with * taking b and ¢ and then + takingaand b * c.

2. + and # bind more strongly than & &, which in turn is stronger than ||:

a&&b-c|d

istaken as

(a&& (b-0)|id

3. When both operators bind equally strongly, the operations are done | eft to right:

a-b-c

istaken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

The operator % returns the value of a reduced by b, so that the result, in absolute value, is less than the

absolute value of b, by repeated subtraction. This is the same as modulus function in integers. New in
Csound version 3.50.

Syntax

a %b (no rate restriction)

where the arguments a and b may be further expressions.

Arguments

The arguments of % can be scalar values or k-rate one dimensional arrays (vectors), or any combination.
If one of the argumentsis an array, so isthe value.

225

Orchestra Opcodes and Operators

Examples

Hereis an example of the % operator. It uses the file modulus.csd [examples/modulus.csd].

Example 21. Example of the % operator.

See the sections Real -time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >
<CsOpti ons>
Sel ect audio/m di flags here according to platform

-odac -Ma --mdi-key=4 --mdi-velocity-anp=5 -n0 ;;;realtinme audio out and mdi in

;-1 adc ;;;unconment -iadc if realtinme audio input is needed too

For Non-real time ouput |eave only the line bel ow
;-0 %wav -W;;; for file output any platform
</ CsOpti ons>
<Csl nst runment s>

sr = 44100
ksmps = 32
nchnl s 2
0dbf s 1

gi Scale ftgen 1, 0, -12, -2, 0, -34, -7, 10, -14, 3, -21, -3, -27

instr 1

i key = p4

ivel = p5

indx = ikey %12 ;work on the twel ftone scal e

icent tab_i indx, giScale ;load the scale

ifreqeq = cpsm di nn(i key)

ifreq = ifregeq * cent(icent) ; change frequency by cents fromtable
prints "Key % nodulus 12 = 9%l. ", ikey, indx

prints "Equal -tenpered frequency of this key = %,", ifregeq

prints " but here with cent deviation %l = % %", icent, ifreq

asig vco2 ivel*.5, ifreq
outs asig, asig

endin

</ Csl nstrunent s>

<CsScor e>

f 060 ;run for 60 seconds
e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

_1+1&&1 ”’*,/,l\

Credits

Arithmetic on vectorsis new in version 6.00

-17 ;12 note scale with dett

226

examples/modulus.csd
examples/modulus.csd

Orchestra Opcodes and Operators

&&

&& — Logical AND operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it asitsleft or right argument, asin

a+b*c.

In such cases three rules apply:

1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)

with * taking b and ¢ and then + takingaand b * c.

2.+ and # bind more strongly than & &, which in turn is stronger than ||:

a&&b-c|d

istaken as

(a&& (b-c)|d

3. When both operators bind equally strongly, the operations are done | eft to right:

a-b-c

istaken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

a & b (logical AND; not audio-rate)

where the arguments a and b may be further expressions.

Examples
Here is an example of the Logical AND operator. It uses the file opand.csd [examples/opand.csd].

Example 22. Example of the opand opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

227

examples/opand.csd
examples/opand.csd

Orchestra Opcodes and Operators

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,unconment -iadc if realtinme audio input is needed too
; For Non-realtime ouput |eave only the Iine bel ow

; -0 opand.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
instr 1
kval randonmh 0, 1.2, 20 ;choose between 0 and 1.2
if kval >0 && kval <=.5 then ;3 possible outcones
kval =1
el seif kval >.5 && kval <=1 then
kval =2
el seif kval >1 then
kval =3
endi f
printk2 kval ;print value when it changes

asig poscil .7, 440*kval, 1
outs asig, asig

endin

</ Csl nstrunent s>
<CsScor e>

f1 0 16384 10 1

i 105

e

</ CsScor e>

</ CsoundSynt hesi zer >

Its output should include lines like these:

il 0. 00000
il 3. 00000
il 1. 00000
il 3. 00000
il 1. 00000
il 2. 00000
il 3. 00000
See Also

_1+1 ”1*!/1/\1%

228

Orchestra Opcodes and Operators

>
> — Determinesif one value is greater than another.

Description
Determinesif one valueis greater than another.

Syntax
(a> b ?2vl: v2)
where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance
In the above conditional, a and b are first compared. If the indicated relation istrue (a greater than b), then
the conditional expression hasthe value of v1; if the relation isfalse, the expression has the value of v2.
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.
In terms of binding strength, al conditional operators (i.e. the relational operators (<, etc.), and ?, and :)
are weaker than the arithmetic and logical operators (+, -, *, /, && and |]).
These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
compl ete statements themsel ves.

Examples

Here is an example of the > operator. It uses the file greaterthan.csd [exampl es/greaterthan.csd].

Example 23. Example of the > operator.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform
; Audi o out Audio in

- odac -iadc ;o RT audio 1/0
For Non-realtine ouput |eave only the |line bel ow
; -0 greaterthan.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

Initialize the global variables.

sr = 44100
kr = 44100
ksmps = 1

nchnls = 1

I nstrument #1.
instr 1

229

examples/greaterthan.csd
examples/greaterthan.csd

Orchestra Opcodes and Operators

Get the 4th p-field fromthe score.
ki1 = p4

Is it greater than 3? (1 = true, 0 = fal se)
k2 =(p4 >3 ?21: 0

Print the values of k1 and k2.
printks "kl = %, k2 = 9%\\n", 1, k1, k2
endin

</ Csl nstrunent s>
<CsScor e>

; Call Instrunent #1 with a p4
i 10052

Call Instrunent #1 with a p4
i 11053

Call Instrunent #1 with a p4 = 4.
i 120514
e

I
N

I
w

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000

k1 = 3.000000, k2 = 0.000000

k1 = 4.000000, k2 = 1.000000
See Also

== >= <=.< I=

Credits

Example written by Kevin Conder.

230

Orchestra Opcodes and Operators

>= — Determinesif one valueis greater than or equal to another.

Description

Determinesif one valueis greater than or equal to another.

Syntax
(a>=Db ?vl: v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditional, a and b are first compared. If the indicated relation is true (a greater than or
equal to b), then the conditional expression has the value of v1; if the relation is false, the expression has
the value of v2.

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :)
are weaker than the arithmetic and logical operators (+, -, *, /, && and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
compl ete statements themselves.

Examples

Hereis an example of the >= operator. It uses the file greaterequal .csd [examples/greaterequal .csd] .

Example 24. Example of the >= operator.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform
; Audi o out Audio in

- odac -iadc ;o RT audio 1/0
For Non-real tine ouput |eave only the |ine bel ow
; -0 greaterequal .wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

; Initialize the global variables.
sr = 44100

kr = 44100
ksmps = 1

nchnls = 1

I nstrument #1.

231

examples/greaterequal.csd
examples/greaterequal.csd

Orchestra Opcodes and Operators

instr 1
; Get the 4th p-field fromthe score.
ki1 = p4

2]

it greater than or equal to 3? (1 = true, 0 = fal se)
k2 = (p4>=3°?21: 0)

; Print the values of k1 and k2.

printks "kl = %, k2 = 9%\\n", 1, k1, k2
endi n

</ Csl nstrunent s>
<CsScor e>

; Call Instrunent #1 with a p4 = 2.

i 10052
; Call Instrunent #1 with a p4 = 3.
i 11053
; Call Instrunent #1 with a p4 = 4.
i 120514

e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000

k1 = 3.000000, k2 = 1.000000

k1l = 4.000000, k2 = 1.000000
See Also

== > <= < I=

Credits

Example written by Kevin Conder.

232

Orchestra Opcodes and Operators

<
< — Determinesif one valueis less than another.

Description
Determinesif one valueis less than another.

Syntax
(a< b?2vl: v2
where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance
In the above conditional, a and b are first compared. If the indicated relation is true (a less than b), then
the conditional expression hasthe value of v1; if the relation isfalse, the expression has the value of v2.
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.
In terms of binding strength, al conditional operators (i.e. the relational operators (<, etc.), and ?, and :)
are weaker than the arithmetic and logical operators (+, -, *, /, && and |]).
These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
compl ete statements themsel ves.

Examples

Here is an example of the < operator. It uses the file lessthan.csd [examples/lessthan.csd].

Example 25. Example of the < operator.

See the sections Real -time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform

-odac ;;;realtinme audio out

;-1 adc ;;,unconment -iadc if realtinme audio input is needed too
For Non-real tinme ouput |eave only the line bel ow

;-0 <.wav -W,;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
instr 1

ipch = p4

233

examples/lessthan.csd
examples/lessthan.csd

Orchestra Opcodes and Operators

ipitch = (ipch < 15 ? cpspch(ipch) : ipch) ;if p4 is lower then 15, it assunes p4 to be pitch-class
print ipitch ;and not nmeant to be a frequency in Hertz
asig poscil .5, ipitch, 1

outs asig, asig

endin

</ Csl nstrunent s>
<CsScor e>

f1 0 8192 10 1 ;sine wave

8.00 ; pitch class

il
i1 800 ; frequency

0 3
4 3
e

</ CsScor e>

</ CsoundSynt hesi zer >

Its output should include lines like this:

ipitch = 261.626

i pitch = 800. 00
See Also

== >= > <=_I=

234

Orchestra Opcodes and Operators

<=
<=— Determinesif one valueisless than or equal to another.

Description
Determinesif one valueis less than or equal to another.

Syntax
(a<=b ?vl: v2)
where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance
In the above conditional, a and b are first compared. If the indicated relation is true (a less than or equal
to b), then the conditional expression has the value of v1; if the relation is false, the expression has the
value of v2.
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.
In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :)
are weaker than the arithmetic and logical operators (+, -, *, /, && and ||).
These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
compl ete statements themselves.

Examples

Hereis an example of the <= operator. It uses the file lessequal .csd [examples/lessequal .csd].

Example 26. Example of the <= operator.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,uncomment -iadc if realtime audio input is needed too
For Non-real time ouput |eave only the line bel ow

; -0 <=.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnl s 2
0dbf s 1

instr 1

235

examples/lessequal.csd
examples/lessequal.csd

Orchestra Opcodes and Operators

kval randonmh 0, 1.2, 20 ;choose between 0 and 1.2

if kval >0 &% kval <=.5 then ;3 possible outcones
kvl =1
el seif kval >.5 && kval <=1 then

kvl =2

el seif kval >1 then

kvl =3

endi f

printks "random nunber = 9%, result = %\n", .1, kval

asig poscil .7, 440*kvl, 1
outs asig, asig

endi n

</ Csl nstrunent s>
<CsScor e>

f1 0 16384 10 1

i 105

e

</ CsScor e>

</ CsoundSynt hesi zer >

Its output should include lines like this:

random nunber = 1.035781, result = 3.000000
random nunber = 0.134037, result = 1.000000
random nunber = 0.130742, result = 1.000000
random nunber = 1.002550, result = 3.000000
random nunber = 0.370565, result = 1.000000
random nunber = 0.655759, result = 2.000000
random nunber = 0.676154, result = 2.000000

kv

236

Orchestra Opcodes and Operators

* — Multiplication operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could takeit asitsleft or right argument, asin

at+b*c.

In such cases three rules apply:

1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)

with * taking b and ¢ and then + takingaand b * c.

2.+ and # bind more strongly than & &, which in turn is stronger than ||:
a&&b-c|d

istaken as

(a&& (b-0)|id

3. When both operators bind equally strongly, the operations are done | eft to right:
a-b-c

istaken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

a* b (norate restriction)

where the arguments a and b may be further expressions.

237

Orchestra Opcodes and Operators

Arguments

The arguments of * can be scalar values or k-rate one dimensional arrays (vectors), or any combination.
If one of the argumentsis an array, so isthe value.

Examples

Hereis an example of the * operator. It uses the file multiplies.csd [examples/multiplies.csd].

Example 27. Example of the* operator.

See the sections Real -time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform

- odac ;s realtine audio out

;-1 adc ;;;uncomment -iadc if realtinme audio input is needed too
For Non-real time ouput |eave only the line bel ow
-omultiplies.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksnmps = 32
nchnl s 2
Odbfs 1

instr 1

kenv expon 0.01, p3, 1

aout posci|l 0.8*kenv, 440, 1 ;nultiply anplitude fromO to 1 * 0.8
printks "base anplitude * rising expon output = 0.8 * %\n", .1, kenv
outs aout, aout

endi n

</ Csl nstrunent s>
<CsScor e>

f 10 16384 10 1 ; sine wave
i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include aline like this:

base anplitude * rising expon output = 0.8 * 0.010000

base anplitude * rising expon output = 0.8 * 0.012589

base anplitude * rising expon output = 0.8 * 0.794328

base anplitude * rising expon output = 0.8 * 0.998466
See Also

_|+1&&| ”!/1/\!%

238

examples/multiplies.csd
examples/multiplies.csd

Orchestra Opcodes and Operators

Credits

Arithmetic on vectorsis new in version 6.00

239

Orchestra Opcodes and Operators

+ — Addition operator

Description

Arithmetic operators perform operations of change-sign (negate), do-no-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could takeit asitsleft or right argument, asin

a+b*c.

In such cases three rules apply:

1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)

with * taking b and ¢ and then + takingaand b * c.

2.+ and # bind more strongly than & &, which in turn is stronger than ||:
a&&b-c|d

istaken as

(a&é& (b-c)|ld

3. When both operators bind equally strongly, the operations are done | eft to right:
a-b-c

istaken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

+a (no rate restriction)

a+b (norate restriction)

where the arguments a and b may be further expressions.

240

Orchestra Opcodes and Operators

Arguments

The arguments of + can be scalar values or k-rate one dimensional arrays (vectors), or any combination.
If one of the argumentsisan array, so isthe value.

Examples

Here is an example of the + operator. It uses the file adds.csd [examples/adds.csd].

Example 28. Example of the + operator.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/nmidi flags here according to platform

- odac ; RT audi o out

;-1 adc ;;;uncomment -iadc if RT audio input is needed too
For Non-realtine ouput |eave only the line bel ow

; -0 adds.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1

add uni pol ar square to osci
kanmp p4
kcps 1
itype = 3

klfo I fo kanp, kcps, itype
printk2 klfo

asig oscil 0.7, 440+klfo, 1
outs asig, asig

endi n

</ Csl nst runent s>

<CsScor e>

; Sine wave.

f 10 32768 10 1

i 1021 ;adds 1 Hz to frequency

i 1+ 2 10 ;adds 10 Hz to frequency

i 1+ 2 220 ;adds 220 Hz to frequency

e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

_1&&1 ”!*1/! Ay%

241

examples/adds.csd
examples/adds.csd

Orchestra Opcodes and Operators

Credits

Arithmetic on vectorsis new in version 6.00

242

Orchestra Opcodes and Operators

- — Subtraction operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could takeit asitsleft or right argument, asin

a+b*c.

In such cases three rules apply:

1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)

with * taking b and ¢ and then + takingaand b * c.

2.+ and # bind more strongly than & &, which in turn is stronger than ||:
a&&b-c|d

istaken as

(a&& (b-c))|d

3. When both operators bind equally strongly, the operations are done | eft to right:
a-b-c

istaken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

#a (no rate restriction)

243

Orchestra Opcodes and Operators

a# b (norate restriction)

where the arguments a and b may be further expressions.

Arguments

The arguments of _ can be scalar values or k-rate one dimensional arrays (vectors), or any combination.
If one of the argumentsisan array, so isthe value.

Examples

Here is an example of the - operator. It uses the file subtracts.csd [exampl es/subtracts.csd].

Example 29. Example of the - operator.

See the sections Real-time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform
Audi 0 out Audio in No nessages

- odac ;;srealtine audio 1/0
For Non-real tinme ouput |eave only the line bel ow
-0 -.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100

ksnmps = 32

nchnls = 2

0dbfs =1

instr 1

idur = p3

iatt = p4

idec = p5

isus = p3-iatt-idec ;calculate sustain tine fromsubtracting attack and decay

printf_i "sutain tine= note duration - attack - decay --> % 1f-%1f-% 1f = % 1f\n", 1, idur, iatt, idec

kenv expseg 0.01, iatt, 1, isus, 1, idec, 0.01 ;envel ope
asig poscil 1*kenv, 200, 1
outs asig, asig

endi n

</ Csl nstrunent s>

<CsScor e>

f 1 0 4096 10 1 ;sine wave
; attack decay

i 103.1 .2
i 143.5 1.5
i 185 4 .5

e
</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like these:

sutain tine= note duration - attack - decay --> 3.0-0.1-0.2 = 2.7

244

examples/subtracts.csd
examples/subtracts.csd

Orchestra Opcodes and Operators

sutain tine= note duration - attack - decay --> 3.0-0.5-1.5
sutain tine= note duration - attack - decay --> 5.0-4.0-0.5

See Also

+1&&1 ”1*1/1/\1%

Credits

Arithmetic on vectorsis new in version 6.00

er
oo

245

Orchestra Opcodes and Operators

/ — Division operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could takeit asitsleft or right argument, asin

at+b*c.

In such cases three rules apply:

1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)

with * taking b and ¢ and then + takingaand b * c.

2.+ and # bind more strongly than & &, which in turn is stronger than ||:
a&&b-c|d

istaken as

(a&& (b-0)|id

3. When both operators bind equally strongly, the operations are done | eft to right:
a-b-c

istaken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

al/ b (norate restriction)

where the arguments a and b may be further expressions.

246

Orchestra Opcodes and Operators

Arguments

The arguments of / can be scalar values or k-rate one dimensiona arrays (vectors), or any combination.
If one of the argumentsisan array, so isthe value.

Examples

Here is an example of the/ operator. It uses the file divides.csd [examples/divides.csd].

Example 30. Example of the/ operator.

See the sections Real-time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform
- odac ;;;realtine audio out

;-1 adc ;;;uncomment -iadc if realtinme audio input is needed too
; For Non-realtine ouput |eave only the line bel ow

; -0 /.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runent s>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

instr 1

idiv = 1/p3 * p4

ktrm oscil 1, idiv, 1 ;use oscil as an envel ope
printf "retrigger rate per note duration = %\n",1, idiv
kndx line 5, p3, 1 ;vary index of FM

asig foscil ktrm 200, 1, 1.4, kndx, 1
outs asig, asig

endi n

</ Csl nst runent s>

<CsScor e>

f 1 0 4096 10 1 ;sine wave

0
5

S
o hO
ww w
N B

e
</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like these:

retrigger rate per note duration = 3.333333
retrigger rate per note duration = 5.000000
retrigger rate per note duration = 0.666667

See Also

_1+1&&| ||!*IA!%

247

examples/divides.csd
examples/divides.csd

Orchestra Opcodes and Operators

Credits

Arithmetic on vectorsis new in version 6.00

248

Orchestra Opcodes and Operators

= — Performs a simple assignment.

Syntax

ares = xarg
ires = iarg
kres = karg
ires, ... =iarg
kres, ... = karg

table [kval] = karg

Description

Performs a simple assignment.

Initialization

= (simple assignment) - Put the value of the expression iarg (karg, xarg) into the named result. This
provides a means of saving an evaluated result for later use.

From version 5.13 onwards the i- and k-rate versions of assignment can take a number of outputs, and an
equal or less number of inputs. If there are lessthe last value is repeated as necessary.

From version 5.14 values can be assigned to elements of a vector with the square bracket form.

Examples

Here is an example of the assign opcode. It uses the file assign.csd [examples/assign.csd].

Example 31. Example of the assign opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;uncomment -iadc if RT audio input is needed too
For Non-real tinme ouput |eave only the line bel ow
-0 assign.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2

instr 1

249

examples/assign.csd
examples/assign.csd

Orchestra Opcodes and Operators

; Assign a value to the variable il.
il =1234

Print the value of the il variable.

print il
endi n

</ Csl nstrunent s>
<CsScor e>

; Play Instrunent #1 for one second.
i 101
e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include aline like this:

instr 1: i1l = 1234.000

See Also

divz, init, passign, tival

Credits

Example written by Kevin Conder.
The extension to multiple valuesis by

Author: John ffitch

University of Bath, and Codemist Ltd.
Bath, UK

February 2010

New in version 5.13

250

Orchestra Opcodes and Operators

+= — Performs add and assignment.

Syntax

ares += xarg
ires += iarg
kres += karg

table [kval] += karg

Description

Performs an add and assign.

Initialization

+= - Adds the value of the expression iarg (karg, xarg) into the named result. This provides a means of
saving an evaluated result for later use.

Examples

Here is an example of the plusbecomes opcode. It uses the file reverb.csd [examples/reverb.csd].

Example 32. Example of the plusbecomes opcode.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,unconment -iadc if realtinme audio input is needed too
For Non-realtinme ouput |eave only the line bel ow
-0 reverb.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
Odbfs =1
nchnls = 2
gal init O
instr 1

asig poscil .2, cpspch(p4), 1
outs asig, asig

gal += asig ;add direct signal to global reverb

251

examples/reverb.csd
examples/reverb.csd

Orchestra Opcodes and Operators

endi n
instr 99 ; (highest instr nunmber executed |ast)

arev reverb gal, 1.5
outs arev, arev

gal = 0 ;clear
endi n

</ Csl nstrunent s>
<CsScor e>
f 10 128 10 1 ;sine

00 ;short sounds

i 1001
i 1101
i 1201
i 1301

i 99 0 6 ;reverb runs for 6 seconds
e

</ CsScor e>

</ CsoundSynt hesi zer >

See Also
assign,
Credits

Author: John ffitch

University of Bath, and Codemist Ltd.
Bath, UK

2013

New in version 6.00

252

Orchestra Opcodes and Operators

== — Compares two values for equality.

Description

Compares two values for equality.

Syntax
(a==Db ?vl: v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditional, a and b are first compared. If the indicated relation istrue (ais equal to b), then
the conditional expression has the value of v1; if the relation is false, the expression has the value of v2.
(For convenience, asole"=" will function as"= =".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :)
are weaker than the arithmetic and logical operators (+, -, *, /, && and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
compl ete statements themselves.

Examples

Hereis an example of the == operator. It uses the file equal s.csd [examples/equal s.csd].

Example 33. Example of the == operator.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,uncomment -iadc if realtime audio input is needed too
For Non-real time ouput |eave only the line bel ow

; -0 equals.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnl s 2
0dbf s 1

instr 1

253

examples/equals.csd
examples/equals.csd

Orchestra Opcodes and Operators

ienv = p4 ; choose envel ope in score

if (ienv == 0) kthen
kenv adsr 0.05, 0.05, 0.95, 0.05 ;sustained envel ope

elseif (ienv == 1) kthen

kenv adsr 0.5, 1, 0.5, 0.5 ;triangular envel ope
elseif (ienv == 2) kthen

kenv adsr 1, 1, 1, O ;ramp up
endi f

aout vco2 .1, 110, 10
aout = aout * kenv

outs aout, aout
endin

</ Csl nstrunent s>

<CsScor e>
irL02 O
i132 1
ilL62 2
e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

254

Orchestra Opcodes and Operators

N\
N — “Power of” operator.
Description
Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could takeit asitsleft or right argument, asin
atb*c
In such cases three rules apply:
1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)
with * taking b and ¢ and then + takingaand b * c.
2. + and # bind more strongly than & &, which in turn is stronger than ||:
a&&b-c|d
istaken as
(a&& (b-c) Il d
3. When both operators bind equally strongly, the operations are done | eft to right:
a-b-c
istaken as
(a-b)-c
Parentheses may be used as above to force particular groupings.
The operator ” raises a to the b power. b may not be audio-rate. Use with caution as precedence may not
work correctly. See pow. (New in Csound version 3.493.)
Syntax

a” b (b not audio-rate)

255

Orchestra Opcodes and Operators

where the arguments a and b may be further expressions.

Examples
Here is an example of the operator. It uses the file raises.csd [examples/rai ses.csd].

Example 34. Example of the” operator.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

- odac ;;,realtime audi o out

;-1 adc ;osuncomment -iadc if RT audio input is needed too
; For Non-realtine ouput |eave only the |ine bel ow

;-0 Nowav ; output to audio file

</ CsOpti ons>

<Csl nst runent s>

sr = 44100
ksnmps = 32
nchnl s 2
Odbfs 1

instr 1 ; Lo-Fi sound

kpow = 10 ; exponent

kbase line 1, p3, 2.2 ;vary the base

kQuanti ze = kbase“kpow

kQuanti ze = kQuanti ze*0.5 ;hal f the nunber of steps for each side of a bipolar signa
printk2 kQuanti ze

asig di skin2 "fox.wav", 1, 0, 1 ;1 oop the fox

asi g = round(asig * kQuantize) / kQuantize ;quantize and scale audio signa

outs asig, asig
endi n
</ Csl nstrunent s>
<CsScor e>
il10 19.2
e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like these:

il 0. 50000
il 0. 50021
il 0. 50042

il 1327.49320
il 1327.74465

See Also

-1+1&&1 ”1*1/1%

256

examples/raises.csd
examples/raises.csd

Orchestra Opcodes and Operators

|| — Logical OR operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical
OR, add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could takeit asitsleft or right argument, asin

a+b*c.

In such cases three rules apply:

1.* and/ bind to their neighbors more strongly than + and _ Thus the above expression is taken as
a+(b*c)

with * taking b and ¢ and then + takingaand b * c.

2.+ and # bind more strongly than & &, which in turn is stronger than ||:
a&&b-c|d

istaken as

(a&& (b-c))|d

3. When both operators bind equally strongly, the operations are done | eft to right:
a-b-c

istaken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

al|| b (logical OR not audio-rate)

257

Orchestra Opcodes and Operators

where the arguments a and b may be further expressions.

Examples
Hereis an example of the | operator. It uses the file logicOR.csd [examples/l ogicOR.csd].

Example 35. Example of the | operator.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>

Sel ect audio/m di flags here according to platform
-odac -+rtmdi=virtual -M ;;,realtime audio out and virtual mdi keyboard
;-1 adc ;;;unconment -iadc if realtinme audio input is needed too

</ CsOpti ons>

<Csl nstrument s>

;after a UDO from Rory Wl sh
sr = 44100

ksmps = 32

nchnls = 2

instr 1 ;displays notes, nmidi channel and control nunber information

kstatus, kchan, kdatal, kdata2 midiin

k1l changed kstatus

k2 changed kchan

k3 changed kdat al

k4 changed kdat a2

if((k1==1)|| (k2==1)|]| (k3==1)]|| (k4==1)) then

printks "Val ue: %l ChanNo: %l Ctrl No:%l\n" , 0, kdata2, kchan, kdatal
endi f

endi n
</ Csl nstrunent s>
<CsScor e>

il 0 60 ;print values for 60 seconds

e
</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include aline like these:

Val ue: 127 ChanNo: 11 Ctrl No: 62
Val ue: 127 ChanNo: 11 Ctrl No: 60
Val ue: 127 ChanNo: 11 Ctrl No: 60
Val ue: 127 ChanNo: 11 Ctrl No: 60
Val ue: 127 ChanNo: 11 Ctrl No: 60

Val ue: 0 ChanNo: 11 Ctrl No: 62
Val ue: 0 ChanNo: 11 Ctrl No: 62
Val ue: 0 ChanNo: 11 Ctrl No: 62
Val ue: 0 ChanNo: 11 Ctrl No: 62

Val ue: 77 ChanNo: 11 Ctrl No: 23
Val ue: 77 ChanNo: 11 Ctrl No: 23
Val ue: 76 ChanNo: 11 Ctrl No: 23
Val ue: 76 ChanNo: 11 Ctrl No: 23

258

examples/logicOR.csd
examples/logicOR.csd

Orchestra Opcodes and Operators

See Also

_|+1&&1*!/1 Al%

259

Orchestra Opcodes and Operators

Odbfs

Odbfs — Setsthe value of O decibels using full scale amplitude.

Description

Sets the value of 0 decibels using full scale amplitude.

Syntax
Odbfs = iarg

0dbf s

Initialization

iarg -- the value of 0 decibels using full scale amplitude.

Performance

The default is 32767, so all existing orcs should work.

Amplitude valuesin Csound are always relative to a"0dbfs" value representing the peak available ampli-
tude before clipping. In the original Csound, this value was always 32767, corresponding to the bipolar
range of a 16bit soundfile or 16bit AD/DA codec. Thisremainsthe default peak amplitude for Csound, for
backward compatibility. The Odbfs value enables Csound to produce appropriately scaled values to what-
ever output format is being used, whether 16bit integer, 24bit integer, 32bit floats, or even 32bit integers.

OdBFS can be defined in the header, to set the amplitude reference Csound will use, but it can aso be
used as avarible inside instruments like this:

i peak = 0dbfs

asig oscil 0dbfs, freq, 1
out asig * 0.3 * 0dbfs

The purpose of the Odbfs opcode is for people to start to code Odbfs-relatively (and use the ampdbfs()
opcodes a lot more!), rather than use explicit sample values. Using Odbfs=1 is in accordance to industry
practice, as ranges from -1 to 1 are used in most commercial plugin formats and in most other synthesis
systems like Pure Data.

Floatswritten to afile, when Odbfs = 1, will in effect go through no range translation at all. So the numbers
in thefile are exactly what the orc saysthey are.

For more details on amplitude values in Csound, see the section Amplitude values in Csound

Example
Here is an example of the Odbfs opcode. It uses the file Odbfs.csd [examples/Odbfs.csd] .

Example 36. Example of the Odbfs opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

260

examples/0dbfs.csd
examples/0dbfs.csd

Orchestra Opcodes and Operators

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform
Audi o out Audio in No messages

- odac -iadc -d ;o RT audio 1/0
For Non-real tinme ouput |eave only the line bel ow
-0 Odbfs.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

; Initialize the gl obal variables
sr = 44100
ksmps = 10
nchnls = 2

Set the Odbfs to 1
Odbfs =1

instr 1 ; fromlinear anplitude (0-1 range)
print p4

al oscil p4, 440, 1

outs al, al

endi n

instr 2 ; fromlinear anplitude (0-32767 range)
iamp = p4 | 32767

print ianp

al oscil ianmp, 440, 1

outs al, al

endi n

instr 3 ; fromdB FS
iamp = anpdbf s(p4)
print ianp

al oscil ianmp, 440, 1
outs al, al

endin

</ Csl nstrunent s>
<CsScor e>

Tabl e #1, a sine wave.
f 10 16384 10 1

101
1+1
1+1

O OoOr

.5
.1

i

i

i

s

i 201 32767

i 2+ 1 [32767/ 2]
i 2+ 1 [3276. 7]
s

i 301 0

i 3+ 1 -6

i 3+ 1 -20

e

</ CsScor e>

</ CsoundSynt hesi zer >

See also

ampdbfs()

261

Orchestra Opcodes and Operators

Credits

Author: Richard Dobson
May 2002

New in version 4.10

262

Orchestra Opcodes and Operators

A4

A4 — Sets the base frequency for pitch A4.

Description

These statements are global value assignments, made at the beginning of an orchestra, before any instru-
ment block is defined. Their function isto set certain reserved symbol variables that are required for per-
formance. Once set, these reserved symbols can be used in expressions anywhere in the orchestra.

Syntax
A4 = iarg
Initialization

A4 = (optional) -- set reference frequency for pitch A4 toiarg Hertz. The default value is 440.

In addition, any global variable can beinitialized by an init-time assignment anywhere before the first instr
statement. All of theabove assignmentsarerun asinstrument O (i-passonly) at the start of real performance.

Beginning with Csound version 6.08, A4 may be used. It affects the behaviour of the opcodes cpspch,
cpsoct, cps2pch, cpsxpeh and cpsmidinn.

See Also

sr, kr, ksmps, nchnls, nchnls i, Odbfs, cpspch, cpsoct, cpsmidinn, cps2pch, cpsxpceh.

Credits

Authors: John ffitch
September 2016

New in Csound Version 6.08

263

Orchestra Opcodes and Operators

<<

<< — Bitshift left operator.

Description

The bitshift operators shift the bits to the left or to the right the number of bits given.

The priority of these operatorsis less binding that the arithmetic ones, but more binding that the compar-
isons.

Parentheses may be used as above to force particular groupings.
Syntax

a<<b (bitshift left)

where the arguments a and b may be further expressions.

Examples
Here is an example of the bitshift left operator. It uses the file bitshift.csd [exampl es/bitshift.csd].

Example 37. Example of the bitshift left operator.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >
<CsOpti ons>

Sel ect audio/m di flags here according to platform
; Audi o out Audio in

; - odac -iadc ;o RT audio 1/0
For Non-real time ouput |eave only the line bel ow
-0 bitshift.wav -W--nosound ;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksnmps = 128
nchnls = 2

instr 1 ;bit shift right

ival = p4>>p5

printf_i , 1, p4, p5, iva
endi n

instr 2 ;bit shift left

ival = p4<<p5

printf_i , 1, p4, p5, iva
endi n

</ Csl nstrunent s>

<CsScor e>

i1 0 0.1 2 1
i1 + 3 1
i1 + 7 2

264

examples/bitshift.csd
examples/bitshift.csd

Orchestra Opcodes and Operators

i1 + 16 1
i1 + 16 2
i1 + 16 3
i 2 5 0.11 1
i 2 + . 1 2
i 2 + 1 3
i 2 + 1 4
i 2 + 2 1
i 2 + 2 2
i 2 + 2 3
i 2 + 3 2
e

</ CsScor e>

</ CsoundSynt hesi zer >

The example above will produce the following output:

2>>1=1
B 0.000.. 0.100T 0.100TT 0.100M: 0.0 0.0
3>>1=1
B 0.100.. 0.200T 0.200TT 0.200M: 0.0 0.0
7>>2=1
B 0.200.. 0.300T 0.300TT 0.300M: 0.0 0.0
16>>1=8
B 0.300.. 0.400T 0400TT 0400M: 0.0 0.0
16>>2=4
B 0.400.. 0.500T 0500TT 0.500M: 0.0 0.0
16>>3=2

B 0.500.. 5000T 5.000TT 5.000M: 0.0 0.0
new alloc for instr 2:

1<<1=2

B 5.000.. 5100T 5100TT 5100M: 0.0 0.0
1<<2=4

B 5.100.. 5200T 5200TT 5200M: 0.0 0.0
1<<3=8

B 5.200.. 5300T 5300TT 5300M: 0.0 0.0
1<<4=16

B 5300.. 5400T 5400TT 5400M: 0.0 0.0
2<<1=4

B 5.400.. 5500T 5500TT 5500M: 0.0 0.0
2<<2=18

B 5500.. 5600T 5600TT 5600M: 0.0 0.0
2<<3=16

B 5.600.. 5700T 5700TT 5700M: 0.0 0.0
3k<<2=12

See Also

>>,&,|#

265

Orchestra Opcodes and Operators

>>
>> — Bitshift right operator.
Description
The bitshift operators shift the bits to the left or to the right the number of bits given.
The priority of these operatorsis less binding that the arithmetic ones, but more binding that the compar-
isons.
Parentheses may be used as above to force particular groupings.
Syntax
a>>b (bitshift left)
where the arguments a and b may be further expressions.
Examples
See the entry for the << operator for an example.
See Also

<<, &, |#

266

Orchestra Opcodes and Operators

&

& — Bitwise AND operator.

Description

The bitwise operators perform operations of bitwise AND, bitwise OR, bitwise NOT and bitwise non-
equivaence.

Syntax
a &b (bitwise AND)

where the arguments a and b may be further expressions. They are converted to the nearest integer to
machine precision and then the operation is performed.

Performance

The priority of these operatorsis less binding that the arithmetic ones, but more binding that the compar-
isons.

Parentheses may be used as above to force particular groupings.

Examples

Hereisan example of the bitwise AND and OR operators. It usesthe file bitwise.csd [examples/bitwise.cs-
d].

Example 38. Example of the bitwise operators.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >
<CsOpt i ons>

</ CsOpti ons>

<Csl nst runment s>

sr = 44100
ksmps = 32
nchnls = 2

instr 1
iresultO = p4 | p5
iresultAnd = p4 & p5

prints , p4, p5, iresultOr
prints , p4, p5, iresultAnd
endi n

instr 2 ; decimal to binary converter
Shi nary =

inumbits = 8

icount init inunmbits - 1

267

examples/bitwise.csd
examples/bitwise.csd
examples/bitwise.csd

Orchestra Opcodes and Operators

pass:

ivalue = 2 ~ icount
if (p4 & ivalue >= ivalue) then

Sdigit = 1"
el se

Sdigit = "0"
endi f

Shi nary strcat Sbhinary, Sdigit

| oop_ge icount, 1, 0, pass

Stext sprintf "% is % in binary\\n", p4, Sbinary
prints Stext

endin

</ Csl nstrunent s>

<CsScor e>

i 1001 1 2
i1+ 1 3
i1+ 2 4
i1+ 3 10
i 220.1 12

i 2+ 9

i 2+ 15

i 2+ 49

e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

|:#|_'

268

Orchestra Opcodes and Operators

| — Bitwise OR operator.

Description

The bitwise operators perform operations of bitwise AND, bitwise OR, bitwise NOT and bitwise non-
equivalence.

Syntax
al| b (bitwise OR

where the arguments a and b may be further expressions. They are converted to the nearest integer to
machine precision and then the operation is performed.

Performance

The priority of these operatorsis less binding that the arithmetic ones, but more binding that the compar-
isons.

Parentheses may be used as above to force particular groupings.
For an example of usage, see the entry for &
See Also

&, #, -

269

Orchestra Opcodes and Operators

—_
- — Bitwise NOT operator.

Description
The bitwise operators perform operations of bitwise AND, bitwise OR, bitwise NOT and bitwise non-
equivalence.
The priority of these operatorsis less binding that the arithmetic ones, but more binding that the compar-
isons.
Parentheses may be used as above to force particular groupings.

Syntax
~ a (bitw se NOT)
wheretheargument a may beafurther expression. It isconverted to the nearest integer to machine precision
and then the operation is performed.

See Also

&, | #

270

Orchestra Opcodes and Operators

#

#— Bitwise NON EQUIVALENCE operator.

Description

The bitwise operators perform operations of bitwise AND, bitwise OR, bitwise NOT and bitwise non-
equivalence.

The priority of these operatorsis less binding that the arithmetic ones, but more binding that the compar-
isons.

Parentheses may be used as above to force particular groupings.
Syntax

a # b (bitwise NON EQU VALENCE)

where the arguments a and b may be further expressions. They are converted to the nearest integer to
machine precision and then the operation is performed.

See Also

&, |-

271

Orchestra Opcodes and Operators

a

a— Converts ak-rate parameter to an a-rate value with interpolation.

Description
Converts a k-rate parameter to an a-rate value with interpolation.

Syntax

a(x) (control-rate args only)

where the argument within the parentheses may be an expression. Vaue converters perform arithmetic
tranglation from units of one kind to units of another. The result can then be aterm in afurther expression.

Examples
Hereis an example of the a opcode. It uses the file opa.csd [examples/opa.csd].

Example 39. Example of the a opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
For Non-realtinme ouput |eave only the line bel ow

;-0 a.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

hear the difference between instr.1 and 2
sr = 44100

ksmps = 32

nchnls = 2
Odbfs = 1

instr 1 ;sine wave at k-rate

ksig oscil 0.8, 440, 1

k-rate to the audi o-rate conversion

asig = a(ksig)

outs asig, asig

endi n

instr 2 ;sine wave at a-rate

asig oscil 0.8, 440, 1
outs asig, asig

endi n

</ Csl nstrunent s>

272

examples/opa.csd
examples/opa.csd

Orchestra Opcodes and Operators

<CsScor e>
; Sine wave.
f 10 16384 10 1

i
i
e

102
222

</ CsScor e>
</ CsoundSynt hesi zer >

See Also
i,k
Credits

Author: Gabriel Maldonado

New in version 4.21

273

Orchestra Opcodes and Operators

abs

abs — Returns an absolute value.

Description
Returns the absolute value of x.

Syntax

abs(x) (no rate
restriction)

abs(k/i[]) (k- or i-arrays)

where the argument within the parentheses may be an expression. Vaue converters perform arithmetic
tranglation from units of one kind to units of ancther. The result can then be aterm in afurther expression.

Examples
Here is an example of the abs opcode. It uses the file abs.csd [examples/abs.csd].

Example 40. Example of the abs opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform

- odac ;5 RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
For Non-real tinme ouput |eave only the line bel ow
-0 abs.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2

instr 1

ix = p4

i abs = abs(ix)
print iabs

endi n

</ Csl nstrunent s>
<CsScor e>

'O

5

N
+ + O
N

i
i 1
i -13
e

</ CsScor e>

274

examples/abs.csd
examples/abs.csd

Orchestra Opcodes and Operators

</ CsoundSynt hesi zer >

Its output should include lines like:

instr 1: iabs = 0.000

instr 1: iabs = 0.150

instr 1: iabs = 13.000
See Also

exp, frac, int, log, 10g10, i, sgrt

275

Orchestra Opcodes and Operators

active

active — Returns the number of active instances of an instrument.

Description

Returns the number of active instances of an instrument with options to ignore releasing instances.

Syntax

ir active insnum[,iopt [,inorel]]
ir active Sinsnanme [,iopt [,inorel]]

kres active kinsnum[,iopt [,inorel]]

Initialization

insnum -- number or string name of the instrument to be reported
Snsname -- instrument name
iopt -- select currently active (zero, default), or all every active (non zero)

inorel -- if non-zero ignore instruments in release phase (zero, default), only valid if ioptsis zero.

Performance

kinsnum -- number or string name of the instrument to be reported

active returns the number of active instances of instrument number insnunvkinsnum (or named instrument
Snsname). As of Csound 4.17 the output is updated at k-rate (if input arg isk-rate), to allow running count
of instr instances.

Asof Csound 5.17 if the instrument number is given as zero then al instruments are counted.

Examples

Hereisasimple example of the active opcode. It uses the file active.csd [examples/active.csd)].

Example 41. Simple example of the active opcode.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >
<CsOpti ons>

Sel ect audio/mdi flags here according to platform
; Audi o out Audi o in

- odac -iadc ;o RT audio 1/0
For Non-realtine ouput |eave only the |ine bel ow
-0 active.wav -W;;; for file output any platform

</ CsOpti ons>

276

examples/active.csd
examples/active.csd

Orchestra Opcodes and Operators

<Csl nstrunent s>

; Initialize the gl obal variables

sr = 44100
kr = 4410
ksmps = 10

nchnls = 1

; Instrument #1 - a noi sy waveform
instr 1
; CGenerate a really noisy waveform
anoi sy rand 44100
; Turn down its anplitude
aout put gai n anoi sy, 2500
; Send it to the output
out aout put
endi n

. Instrunment #2 - counts active instrunents
instr 2
; Count the active instances of Instrunment #1
icount active 1
; Print the nunber of active instances
print icount
endin

</ Csl nstrunent s>
<CsScor e>

; Start the first instance of Instrunment #1 at 0:00 seconds
i 10.03.0

; Start the second instance of Instrunent #1 at 0:015 seconds
i 11.51.5

; Play Instrunent #2 at 0:01 seconds, when we have only
; one active instance of Instrument #1
i 21.00.1

; Play Instrunent #2 at 0: 02 seconds, when we have

; two active instances of Instrunment #1
i 22.00.1

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like this:

1. 000
2.000

instr 2: icount
instr 2: icount

Here is a more advanced example of the active opcode. It displays the results of the active opcode at k-
rate instead of i-rate. It usesthefile active_k.csd [exampled/active k.csd].

Example 42. Example of the active opcode at k-rate.

<CsoundSynt hesi zer >
<CsOpt i ons>
; Select audio/mdi flags here according to platform

277

examples/active_k.csd
examples/active_k.csd

Orchestra Opcodes and Operators

; Audi o out Audio in

- odac -iadc ;o RT audio 1/0
; For Non-realtime ouput |eave only the Iine bel ow
; -0 active_k.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

; Initialize the gl obal variables

sr = 44100
kr = 4410
ksmps = 10

nchnls = 1

; Instrument #1 - a noi sy waveform
instr 1
; CGenerate a really noisy waveform
anoi sy rand 44100
; Turn down its anplitude
aout put gai n anoi sy, 2500
; Send it to the output
out aout put
endi n

; Instrunment #2 - counts active instrunents at k-rate
instr 2
; Count the active instances of Instrunent #1
kcount active 1
; Print the nunber of active instances
printk2 kcount
endin

</ Csl nstrunent s>
<CsScor e>

; Start the first instance of Instrunment #1 at 0:00 seconds
i 10.03.0

; Start the second instance of Instrunent #1 at 0:015 seconds
i 11.51.5

; Play Instrunent #2 at 0:01 seconds, when we have only
; one active instance of Instrunent #1

i 21.00.1

; Play Instrunent #2 at 0: 02 seconds, when we have

; two active instances of Instrunment #1
i 22.00.1

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like:

i2 1. 00000
i2 2. 00000

Here is another example of the active opcode, using the number of instances to calculate gain. It usesthe
file active_scale.csd [examples/active _scale.csd].

Example 43. Example of the active opcode at k-rate.

278

examples/active_scale.csd
examples/active_scale.csd

Orchestra Opcodes and Operators

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/mdi flags here according to platform
Audi o out Audio in No messages

- odac -d ;o RT audio 1/0
For Non-real tinme ouput |eave only the line bel ow
-0 atone.wav -W;;; for file output any platform

</ CsOpt i ons>
<Csl nstrunent s>

sr= 44100
ksmps = 64
nchnls = 1
Odbfs = 1

; by Victor Lazzarini 2008

instr 1

kscal active 1

kamp port 1/ kscal, 0.01

asig oscili kanp, p4, 1

kenv linseg 0, 0.1,1,p3-0.2,1,0.1, O

out asig*kenv
endi n

</ Csl nstrunent s>
<CsScor e>
f1 0 16384 10 1

il 0 10 440

il13 220

il25 350

il 43 700

e

</ CsScor e>

</ CsoundSynt hesi zer >

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

July, 1999

Examples written by Kevin Conder.

New in Csound version 3.57; named instruments added version 5.13
Option for al ever active new in 5.13

Count of al instruments new in 5.17

No release option new in 5.19

279

Orchestra Opcodes and Operators

adsr

adsr — Calculates the classical ADSR envelope using linear segments.
Description

Calculates the classical ADSR envelope using linear segments.

Syntax
ares adsr iatt, idec, islev, irel [, idel]
kres adsr iatt, idec, islev, irel [, idel]
Initialization

iatt -- duration of attack phase
idec -- duration of decay

islev -- level for sustain phase
irel -- duration of release phase

idel -- period of zero before the envelope starts

Performance

The envelope generated is the range 0 to 1 and may need to be scaled further, depending on the amplitude
required. If using Odbfs = 1, scaling down will probably be required since playing more than one note
might result in clipping. If not using Odbfs, scaling to alarge amplitude (e.g. 32000) might be required.

The envelope may be described as:

280

Orchestra Opcodes and Operators

Picture of an ADSR envelope.

The length of the sustain is calculated from the length of the note. This means adsr is not suitable for use
with MIDI events. The opcode madsr usesthelinsegr mechanism, and so can beused in MIDI applications.

adsr isnew in Csound version 3.49.

Examples

Here is an example of the adsr opcode. It uses the file adsr.csd [examples/adsr.csd].

Example 44. Example of the adsr opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

- odac i RT audi o out

;-iadc ;;;uncomment -iadc if RT audio input is needed too
; For Non-realtine ouput |eave only the line bel ow

; -0 adsr.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

[Eny

instr

iatt
i dec
islev
irel

kenv adsr iatt, idec, islev, ire
kcps = cpspch(p4) ; frequency

asig vco2 kenv * 0.8, kcps
outs asig, asig

endi n

</ Csl nst runent s>

<CsScor e>

i1 0 2 7.00 .0001 1 .5 .001 ; short attack
i1 3 2 7.02 1 .5 .5 .001 ; long attack
i1 6 2 6.09 .0001 1.5 .7 ; long rel ease
e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

madsr, mxadsr, xadsr

281

examples/adsr.csd
examples/adsr.csd

Orchestra Opcodes and Operators

Credits

Author: John ffitch

New in version 3.49

282

Orchestra Opcodes and Operators

adsyn

adsyn — Output is an additive set of individually controlled sinusoids, using an oscillator bank.

Description

Output is an additive set of individually controlled sinusoids, using an oscillator bank.

Syntax

ares adsyn kanod, kfnod, ksnod, ifilcod

Initialization

ifilcod -- integer or character-string denoting a control-file derived from analysis of an audio signal. An
integer denotesthe suffix of afileadsyn.mor pvoc.m; acharacter-string (in double quotes) givesafilename,
optionally afull pathname. If not fullpath, the file is sought first in the current directory, then in the one
given by the environment variable SADIR (if defined). adsyn control contains breakpoint amplitude- and
frequency-envelope values organized for oscillator resynthesis, while pvoc control contains similar data
organized for fft resynthesis. Memory usage depends on the size of the files involved, which are read and
held entirely in memory during computation but are shared by multiple calls (see also Ipread).

Performance

kamod -- amplitude factor of the contributing partials.

kfmod -- frequency factor of the contributing partials. It is a control-rate transposition factor: avaue of 1
incurs no transposition, 1.5 transposes up a perfect fifth, and .5 down an octave.

ksmod -- speed factor of the contributing partials.

adsyn synthesizes complex time-varying timbres through the method of additive synthesis. Any number of
sinusoids, each individually controlled in frequency and amplitude, can be summed by high-speed arith-
metic to produce a high-fidelity result.

Component sinusoids are described by a control file describing amplitude and frequency tracks in mil-
lisecond breakpoint fashion. Tracks are defined by sequences of 16-bit binary integers:

-1, time, amp, time, amp,...
-2, time, freq, time, freq,...

such asfrom hetrodyne filter analysis of an audiofile. (For details see hetro.) Theinstantaneous amplitude
and frequency values are used by an internal fixed-point oscillator that adds each active partial into an
accumulated output signal. While thereisapractical limit (limit removed in version 3.47) on the number
of contributing partials, thereisno restriction on their behavior over time. Any sound that can be described
in terms of the behavior of sinusoids can be synthesized by adsyn alone.

Sound described by an adsyn control file can also be modified during re-synthesis. The signals kamod,
kfmod, ksmod will modify the amplitude, frequency, and speed of contributing partials. These are multi-
plying factors, with kfimod modifying the frequency and ksmod modifying the speed with which the mil-

283

Orchestra Opcodes and Operators

lisecond breakpoint line-segments are traversed. Thus .7, 1.5, and 2 will give rise to a softer sound, a per-
fect fifth higher, but only half as long. The values 1,1,1 will leave the sound unmodified. Each of these
inputs can be a control signal.

Examples

Here is an example of the adsyn opcode. It uses the file adsyn.csd [examples/adsyn.csd], and kickroll.het
[exampleg/kickroll.het]. The file “kickroll.het” was created by using the hetro utility with the audio file
kickroll.wav [examples/kickroll.wav].

Example 45. Example of the adsyn opcode.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/mdi flags here according to platform

- odac ;; RT audi o out

;-1 adc vosuncomment -iadc if RT audio input is needed too
For Non-realtinme ouput |eave only the Iine bel ow

; -0 adsyn.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runent s>

sr = 44100
ksnps = 32
nchnls = 2
Odbfs =1

instr 1
anal yze the file "kickroll.wav" first
kanod 1
kf mod p4
ksnod p5

asi g adsyn kanod, kfnod, ksnod, "kickroll.het"
outs asig, asig
endin

</ Csl nstrunent s>
<CsScor e>

R
+ + O
Y
W NP

i
i
i
e

</ CsScor e>
</ CsoundSynt hesi zer >

284

examples/adsyn.csd
examples/adsyn.csd
examples/kickroll.het
examples/kickroll.het
examples/kickroll.wav
examples/kickroll.wav

Orchestra Opcodes and Operators

adsynt

adsynt — Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.

Description

Performs additive synthesis with an arbitrary number of partias, not necessarily harmonic.
Syntax

ares adsynt kanp, kcps, iwfn, ifreqfn, ianpfn, icnt [, iphs]
Initialization

iwfn -- table containing a waveform, usually a sine. Table values are not interpolated for performance
reasons, so larger tables provide better quality.

ifregfn -- table containing frequency values for each partial. ifreqfn may contain beginning frequency
values for each partial, but is usually used for generating parameters at runtime with tablew. Frequencies
must be relative to keps. Size must be at least icnt.

iampfn -- table containing amplitude values for each partial. iampfn may contain beginning amplitude
values for each partial, but is usually used for generating parameters at runtime with tablew. Amplitudes
must be relative to kamp. Size must be at least icnt.

icnt -- number of partialsto be generated

iphs -- initial phase of each oscillator, if iphs = -1, initialization is skipped. If iphs > 1, al phases will be
initialized with arandom value.

Performance

kamp -- amplitude of note
keps -- base frequency of note. Partial frequencies will be relative to keps.

Frequency and amplitude of each partial is given in the two tables provided. The purpose of this opcode
isto have an instrument generate synthesis parameters at k-rate and write them to global parameter tables
with the tablew opcode.

Examples

Here is an example of the adsynt opcode. It uses the file adsynt.csd [examples/adsynt.csd]. These two
instruments perform additive synthesis. The output of each sounds like a Tibetan bowl. The first one
is stetic, as parameters are only generated at init-time. In the second one, parameters are continuously
changed.

Example 46. Example of the adsynt opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

285

examples/adsynt.csd
examples/adsynt.csd

Orchestra Opcodes and Operators

<CsoundSynt hesi zer >
<CsOpt i ons>

Sel ect audio/mdi flags here according to platform
- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
For Non-realtinme ouput |eave only the line bel ow
-0 adsynt.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

Cenerate a sinewave table.
giwave ftgen 1, 0, 1024, 10, 1

Generate two enpty tables for adsynt
gifrgs ftgen 2, 0, 32, 7, 0, 32, 0O

A table for fregency and anp paraneters
gianps ftgen 3, 0, 32, 7, 0, 32, O

CGenerates paranmeters at init tine

instr 1
CGenerate 10 voices
icnt = 10
Init |oop index
index = 0

Loop only executed at init tinmne.
| oop
Defi ne non-harnonic partials.
ifreq powindex + 1, 1.5
Define anplitudes
iamp = 1 / (index+l)
Wite to tables
tableiwifreq, index, gifrgs
Used by adsynt.
tabl eiw ianp, index, gianps

index = index + 1
Do | oop/
if (index <icnt) igoto |oop

asig adsynt 0.3, 150, giwave, gifrqgs, gianps, icnt
outs asig, asig
endi n

Gener ates paraneters every k-cycle

instr 2
CGenerate 10 voices
icnt = 10
Reset | oop index
ki ndex = 0

Loop executed every k-cycle
| oop
CGenerate |fo for frequencies
kspeed pow kindex + 1, 1.6
I ndi vi dual phase for each voice
kphas phasorbnk kspeed * 0.7, kindex, icnt
kl fo tabl e kphas, giwave, 1
Arbitrary paraneter tw ddling..
kdept h pow 1.4, Kkindex
kfreq pow kindex + 1, 1.5
kfreq = kfreq + kI fo*0.006*kdepth

286

Orchestra Opcodes and Operators

Wite fregs to table for adsynt.
tabl ew kfreq, kindex, gifrgs

Generate | fo for anplitudes.
kspeed pow kindex + 1, 0.8
I ndi vi dual phase for each voice.
kphas phasorbnk kspeed*0. 13, kindex, icnt, 2
kl fo tabl e kphas, giwave, 1
Arbitrary paraneter tw ddling...
kamp pow 1 / (kindex + 1), 0.4
kamp = kanmp * (0.3+0.35*(klfo+l))

Wite anps to table for adsynt.
tabl ew kanp, ki ndex, gianps

ki ndex = kindex + 1
Do | oop
if (kindex < icnt) kgoto |oop

asi g adsynt 0.25, 150, giwave, gifrqgs, gianps, icnt
outs asig, asig
endi n

</ Csl nstrunent s>
<CsScor e>

Play Instrument #1 for 2.5 seconds.
i 1025

Play Instrument #2 for 2.5 seconds.
i 2325
e

</ CsScor e>
</ CsoundSynt hesi zer >

Credits

Author: Peter Neubacker
Munich, Germany
August, 1999

New in Csound version 3.58

287

Orchestra Opcodes and Operators

adsynt2

adsynt2 — Performs additive synthesis with an arbitrary number of partials -not necessarily harmonic-
with interpolation.

Description

Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic. (see adsynt
for detailed manual)

Syntax

ar adsynt2 kanp, kcps, iwfn, ifreqfn, ianpfn, icnt [, iphs]

Initialization

iwfn -- table containing a waveform, usually a sine. Table values are not interpolated for performance
reasons, so larger tables provide better quality.

ifreqfn -- table containing frequency values for each partial. ifreqfn may contain beginning frequency
values for each partial, but is usually used for generating parameters at runtime with tablew. Frequencies
must be relative to keps. Size must be at least icnt.

iampfn -- table containing amplitude values for each partial. iampfn may contain beginning amplitude
values for each partial, but is usually used for generating parameters at runtime with tablew. Amplitudes
must be relative to kamp. Size must be at least icnt.

icnt -- number of partialsto be generated

iphs -- initial phase of each oscillator, if iphs = -1, initialization is skipped. If iphs > 1, al phases will be
initialized with arandom value.

Performance

kamp -- amplitude of note
keps -- base frequency of note. Partial frequencies will be relative to keps.

Frequency and amplitude of each partia is given in the two tables provided. The purpose of this opcode
isto have an instrument generate synthesis parameters at k-rate and write them to global parameter tables
with the tablew opcode.

adsynt2 isidentical to adsynt (by Peter Neubécker), except it provides linear interpolation for amplitude
envelopes of each partial. It is abit slower than adsynt, but interpolation higly improves sound quality in
fast amplitude envelope transients when kr < sr (i.e. when ksmps > 1). No interpolation is provided for
pitch envelopes, since in this case sound quality degradation is not so evident even with high values of
ksmps. It is not recommended when kr = sr, in this case adsynt is better (sinceit is faster).

Examples

Here is an example of the adsynt2 opcode. It uses the file adsynt2.csd [examples/adsynt2.csd]. These
two instruments perform additive synthesis. The output of each sounds like a Tibetan bowl. The first one

288

examples/adsynt2.csd
examples/adsynt2.csd

Orchestra Opcodes and Operators

is static, as parameters are only generated at init-time. In the second one, parameters are continuously
changed.

Example 47. Example of the adsynt2 opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/mdi flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
For Non-real time ouput |eave only the line bel ow
-0 adsynt2.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

Cenerate a sinewave table
giwave ftgen 1, 0, 1024, 10, 1

CGenerate two enpty tables for adsynt2
gifrgs ftgen 2, 0, 32, 7, 0, 32, 0

A table for fregency and anp paraneters
gianps ftgen 3, 0, 32, 7, 0, 32, O

CGenerates paranmeters at init tine

instr 1
Cenerate 10 voices
icnt = 10
Init |oop index
index = 0

Loop only executed at init tinmne.
| oop
Define non-harnonic partials.
ifreq powindex + 1, 1.5
Define anplitudes
iamp = 1 / (index+l)
Wite to tables
tableiwifreq, index, gifrgs
Used by adsynt 2.
tabl ei w i anp, index, gianps

index = index + 1
Do | oop/
if (index <icnt) igoto |oop

asig adsynt2 0.4, 150, giwave, gifrqgs, gianps, icnt
outs asig, asig
endi n

Gener ates paraneters every k-cycle

instr 2
CGenerate 10 voices
icnt = 10
Reset | oop index
ki ndex = 0

Loop executed every k-cycle
| oop
CGenerate |fo for frequencies

289

Orchestra Opcodes and Operators

kspeed pow kindex + 1, 1.6
I ndi vi dual phase for each voice.
kphas phasorbnk kspeed * 0.7, kindex, icnt
kl fo tabl e kphas, giwave, 1
Arbitrary paraneter tw ddling...
kdept h pow 1.4, Kkindex
kfreq pow kindex + 1, 1.5
kfreq = kfreq + kl fo*0.006*kdepth

Wite fregs to table for adsynt2.
tabl ew kfreq, kindex, gifrgs

CGenerate | fo for anplitudes.
kspeed pow kindex + 1, 0.8
I ndi vi dual phase for each voice.
kphas phasorbnk kspeed*0. 13, kindex, icnt, 2
kl fo tabl e kphas, giwave, 1
Arbitrary paraneter tw ddling...
kamp pow 1 / (kindex + 1), 0.4
kamp = kanmp * (0.3+0.35*(klfo+l))

; Wite anps to table for adsynt?2.
tabl ew kanp, ki ndex, gianps

ki ndex = kindex + 1
Do | oop
if (kindex < icnt) kgoto |oop

asig adsynt2 0.25, 150, giwave, gifrqgs, gianps, icnt
outs asig, asig
endi n

</ Csl nst runment s>
<CsScor e>

Play Instrument #1 for 2.5 seconds.
i 1025

Play Instrument #2 for 2.5 seconds.

i 2325
e

</ CsScor e>
</ CsoundSynt hesi zer >

Credits

Written by Gabriel Maldonado.

New in Csound 5 (Previously available only on CsoundAV)

290

Orchestra Opcodes and Operators

aftouch

aftouch — Get the current after-touch value for this channel.

Description

Get the current after-touch value for this channel.

Syntax

kaft aftouch [imin] [, imax]

Initialization
imin (optional, default=0) -- minimum limit on values obtained.

imax (optional, default=127) -- maximum limit on values obtained.

Performance

Get the current after-touch value for this channel.

Examples

Here is an example of the aftouch opcode. It uses the file aftouch.csd [examples/aftouch.csd].

Example 48. Example of the aftouch opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Sel ect audio/mdi flags here according to platform

; Audi o out No nmessages MDI in

- odac -d -M ;;;RT audio out with MDI in
</ CsOpt i ons>

<Csl nst runment s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

instr 1

kaft aftouch 0, 1
printk2 kaft

;aftertouch from nusic keyboard used for volune contro
asig oscil 0.7 * kaft, 220, 1
outs asig, asig

endi n

291

examples/aftouch.csd
examples/aftouch.csd

Orchestra Opcodes and Operators

</ Csl nstrunent s>
<CsScor e>

;sine wave.

f 10 16384 10 1

i 10 30
e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry
MIT - Mills
May 1997

292

Orchestra Opcodes and Operators

alpass

alpass — Reverberates an input signal with aflat frequency response.

Description

Reverberates an input signal with aflat frequency response.

Syntax

ares al pass asig, xrvt, ilpt [, iskip] [, insnps]

Initialization

ilpt -- loop time in seconds, which determines the “echo density” of the reverberation. Thisin turn char-
acterizes the “color” of the filter whose frequency response curve will contain ilpt * sr/2 peaks spaced
evenly between 0 and sr/2 (the Nyquist frequency). Loop time can be as large as available memory will
permit. The space required for an n second loop is 4n* sr bytes. The delay space is allocated and returned
asin delay.

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default valueisO.

insmps (optional, default=0) -- delay amount, as a number of samples.

Performance

xrvt -- the reverberation time (defined as the time in seconds for asignal to decay to 1/1000, or 60dB down
fromits original amplitude).

Thisfilter reiterates the input with an echo density determined by loop time ilpt. The attenuation rate is
independent and is determined by xrvt, the reverberation time (defined as the time in seconds for asignal
to decay to 1/1000, or 60dB down from its original amplitude). Output will begin to appear immediately.

Examples
Hereis an example of the alpass opcode. It uses the file alpass.csd [examples/alpass.csd].

Example 49. Example of the alpass opcode.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

- odac ; RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
; For Non-realtime ouput |eave only the Iine bel ow

; -0 alpass.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

293

examples/alpass.csd
examples/alpass.csd

Orchestra Opcodes and Operators

sr = 44100
ksmps = 100
nchnls = 2
Odbfs =1

gamix init O

instr 1

acps expon p4, p3, p5
asig vco 0.6, acps, 1
outs asig, asig

gam x = gam x + asig
endi n

instr 99

arvtl line 3.5*1.5, p3, 6
arvt2 line 3.5, p3, 4

ilpt = 0.1
al eft al pass gam x, arvtl, ilpt
aright al pass gam x, arvt2, ilpt*2

outs aleft, aright
gamx = 0 ; clear mxer
endi n

</ Csl nst runent s>
<CsScor e>
f1 0 4096 10 1

i 103 20 2000

i 99 0 8
e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

comb, reverb, valpass, vcomb

Credits

Audio rate parameter introduced in version 6.02

November 2013.

294

Orchestra Opcodes and Operators

alwayson

alwayson — Activates the indicated instrument in the orchestra header, without need for an i statement.

Description

Activates the indicated instrument in the orchestra header, without need for an i statement. Instruments
must be activated in the same order as they are defined.

The alwayson opcode is designed to simplify the definition of re-usable orchestras with signal processing
or effects chains and networks.

Syntax
al wayson Tinstrument [p4, ..., pn]

Initialization

Tinstrument -- String name of the instrument definition to be turned on.

[p4, ..., pn] -- Optional pfields to be passed to the instrument, in the same order and type as if this were
ani statement.

When the instrument is activated, pl istheinsno, p2is0, and p3is-1. Pfields from p4 on may optionally
be sent to the instrument.

Examples

Here is an example of the alwayson opcode. It uses the file alwayson.csd [examples/alwayson.csd].

Example 50. Example of the alwayson opcode.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform
- odac ;. RT audi o out
;-1 adc ;;;unconment -iadc if RT audio input is needed too

For Non-real time ouput |eave only the line bel ow
;-Wo al wayson. wav
</ CsOpti ons>
<Csl nst runment s>

Initialize the global variables

sr 100

ksmps
nchnls =

44
32
2
Connect up instrunents and effects to create the signal flow graph

connect
connect

connect
connect

connect

295

examples/alwayson.csd
examples/alwayson.csd

Orchestra Opcodes and Operators

connect "Reverberator", "rightout", " Conpr essor", "rightin"
connect " Conpressor”, "l eftout", "Soundfile", "leftin"
connect " Conpressor”, "rightout", "Soundfile", "rightin"

; Turn on the "effect” units in the signal flow graph

al wayson "Reverberator”, 0.91, 12000
al wayson " Conpressor”
al wayson " Soundfile"

; Define instruments and effects in order of signal flow
instr SinpleSine

; Default val ues: pl p2 p3 pd4d p5 p6 p7 p8 p9 plo

pset o, o0 10, O, O, O, 0.5
iattack = 0. 015
i decay = 0. 07
isustain = p3
irelease = 0.3
p3 = iattack + idecay + isustain + irel ease
adanping |insegr 0.0, iattack, 1.0, idecay + isustain, 1.0, irelease
i Hz = cpsm di nn(p4)
; Rescale M DI velocity range to a nusically usable range of
ianmplitude = anpdb(p5 / 127 * 15.0 + 60.0)
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent
i cosi ne ftgenonce 0, 0, 65537, 11, 1
aosci | i oscili ianmplitude, iHz, icosine
aadsr madsr iattack, idecay, 0.6, irelease
asi gnal = aoscili * aadsr
aleft, aright pan2 asignal, p7
; Stereo audio output to be routed in the orchestra header
outleta “leftout”, aleft
outleta “rightout”, aright
endi n
instr Moogy
; Default val ues: pl p2 p3 pd4 p5 p6 p7 p8 p9 plo
pset o, o0 10, O, O, O, 0.5
iattack = 0. 003
isustain = p3
irelease = 0.05
p3 = iattack + isustain + irel ease
adanping |insegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
i Hz = cpsm di nn(p4)
; Rescale M DI velocity range to a nusically usable range of
ianmplitude = anpdb(p5 / 127 * 20.0 + 60.0)
print iHz, ianplitude
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent
i si ne ftgenonce 0, 0, 65537, 10, 1
asi gnal vco ianmplitude, iHz, 1, 0.5, isine
kfco l'ine 2000, p3, 200
krez = 0.8
asi gnal nmoogvcf asignal, kfco, krez, 100000
asi gnal = asi gnal * adanping
aleft, aright pan2 asignal, p7
; Stereo audio output to be routed in the orchestra header
outleta “leftout”, aleft
outleta “rightout”, aright
endi n
instr Reverberator
; Stereo input
al eftin inleta “leftin"
arightin inleta "rightin"

dB.

dB.

296

Orchestra Opcodes and Operators

i del ay = p4
i cutof f = p5
aleft, aright reverbsc aleftin, arightin, idelay, icutoff
; Stereo output
outleta “leftout”, aleft
outleta “rightout”, aright
endi n
instr Conpressor
; Stereo input
al eftin inleta "leftin"
arightin inleta "rightin"
kt hreshol d = 25000
i conpl = 0.5
i conp2 = 0.763
irtim = 0.1
iftime = 0.1
al ef t out dam aleftin, kthreshold, iconmpl, iconp2, irtine, iftine
ari ght out dam arightin, kthreshold, iconpl, iconp2, irtinme, iftime
; Stereo output
outleta “leftout", aleftout
outleta “rightout”, arightout
endi n
instr Soundfile
; Stereo input
al eftin inleta "leftin"
arightin inleta "rightin"
outs aleftin, arightin

endin

</ Csl nstrunent s>
<CsScor e>

; It is not necessary to activate "effects" or create f-tables in the score
; Overlapping notes create new instances of instruments with proper connections

"SinmpleSine” 1 5 60 85

"SinmpleSine” 2 5 64 80

“Mbogy" 3 5 67 75

“Mbogy" 4 5 71 70

;1 extra second after the perfornance
el

</ CsScor e>
</ CsoundSynt hesi zer >

Credits

By: Michagl Gogins 2009

297

Orchestra Opcodes and Operators

ampdb

ampdb — Returns the amplitude equivalent of the decibel value x.

Description

Returns the amplitude equivalent of the decibel value x. Thus:
» 60 dB = 1000

* 66 dB = 1995.262

e 72dB =3891.07

e 78dB =7943.279

» 84 dB = 15848.926

» 90 dB = 31622.764

Syntax

anpdb(x) (no rate restriction)

Examples

Hereis an example of the ampdb opcode. It uses the file ampdb.csd [examples/ampdb.csd].

Example 51. Example of the ampdb opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
; For Non-realtime ouput |eave only the Iine bel ow

;-0 anpdb.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runment s>

sr = 44100
ksmps = 32
nchnls = 2
instr 1
idb = p4
iamp = anpdb(idb)
asig oscil ianmp, 220
print ianp
outs asig, asig
endi n

298

examples/ampdb.csd
examples/ampdb.csd

Orchestra Opcodes and Operators

</ Csl nstrunent s>
<CsScor e>
10150
1 90
1 68

i
i
i
i 1 80

1
1
1

+ + +

e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like:

instr 1: ianmp = 316.228

instr 1: ianmp = 31622.763
instr 1: ianp = 2511. 886
instr 1: ianp = 9999. 996

See Also

ampdbfs, db, dbamp, dbfsamp

299

Orchestra Opcodes and Operators

ampdbfs

ampdbfs — Returns the amplitude equivalent (in 16-bit signed integer scale) of the full scale decibel (dB
FS) value x.

Description

Returns the amplitude equivalent of the full scale decibel (dB FS) value x. The logarithmic full scale
decibel values will be converted to linear 16-bit signed integer values from _35 7gg to +32,767.

Syntax

anpdbfs(x) (no rate restriction)
Examples
Here is an example of the ampdbfs opcode. It uses the file ampdbfs.csd [examples/ampdbfs.csd].

Example 52. Example of the ampdbfs opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
For Non-realtinme ouput |eave only the line bel ow

; -0 anpdbfs.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2

instr 1
idb = p4

iamp = anpdbfs(idb)
asig oscil ianmp, 220, 1

print ianp
outs asig, asig
endi n

</ Csl nstrunent s>
<CsScor e>
; sine wave
f 10 16384 10 1

PR
+ + + O

300

examples/ampdbfs.csd
examples/ampdbfs.csd

Orchestra Opcodes and Operators

e

</ CsScor e>
</ CsoundSynt hesi zer >

Its output should include lines like:

instr 1: ianmp = 29204.511

instr 1: ianp = 18426.801

instr 1: ianp = 16422.904

instr 1: ianp = 3276.800
See Also

ampdb, dbamp, dbfsamp, Odbfs

New in Csound version 4.10

301

Orchestra Opcodes and Operators

ampmidi
ampmidi — Get the velocity of the current MIDI event.

Description

Get the velocity of the current MIDI event.

Syntax

iamp ampmdi iscal [, ifn]

Initialization

iscal -- i-time scaling factor

ifn (optional, default=0) -- function table number of anormalized trand ation table, by which theincoming
value isfirst interpreted. The default value is 0, denoting no trandlation.

Performance

Get the velocity of the current MIDI event, optionally pass it through a normalized trandlation table, and
return an amplitude valuein the range O - iscal.

Examples

Hereis an example of the ampmidi opcode. It uses the file ampmidi.csd [examples/ampmidi.csd].

Example 53. Example of the ampmidi opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;uncomment -iadc if RT audio input is needed too
For Non-realtinme ouput |eave only the line bel ow

;-0 anpmidi.wav -W;;; for file output any platform

</ CsOpt i ons>

<Csl nst runment s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

instr 1 ;expects MDI note inputs on channel 1

iamp anmpmdi 1 ; scale anplitude between 0 and 1
asig oscil ianmp, 220, 1

print ianp

outs asig, asig

302

examples/ampmidi.csd
examples/ampmidi.csd

Orchestra Opcodes and Operators

endi n

</ Csl nstrunent s>

<CsScor e>

; Dummy f-table for 1 minute
f 0 60

; si ne wave.

f 10 16384 10 1

e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

aftouch, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry
MIT - Mills
May 1997

303

Orchestra Opcodes and Operators

ampmidid

ampmidid — Musically map MIDI velocity to peak amplitude within a specified dynamic range in deci-
bels.

Description

Musically map MIDI velocity to peak amplitude within a specified dynamic range in decibels.

Syntax
i anplitude anpnmidid ivelocity, idecibels

kanpl i tude anpmidid kvel ocity, idecibels

Initialization
iamplitude -- Amplitude.
ivelocity -- MIDI velocity number, ranging from O through 127.

idecibels -- Desired dynamic range in decibels.

Performance

kamplitude -- Amplitude.
kvelocity -- MIDI velocity number, ranging from 0 through 127.

Musically map MIDI velocity to peak amplitude within a specified dynamic rangein decibels: a= (m* v
+b) * 2, wherea= amplitude, v = MIDI velocity, r =10 (R/ 20), b=127/ (126 * sgrt(r)) - 1/126, m=
(1-b) /127, and R = specified dynamic range in decibels. See Roger Dannenberg, "The Interpretation of
MIDI Velocity," in Georg Essl and I chiro Fujinaga (Eds.), Proceedings of the 2006 I nternational Computer
Music Conference, November 6-11, 2006 (San Francisco: The International Computer Music Association),
pp. 193-196.

Examples

Hereis an example of the ampmidid opcode. It uses the file ampmidid.csd [examples/ampmidid.csd].

Example 54. Example of the ampmidid opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform

;; RT audi o out, note=p4 and vel ocity=p5

-odac --mdi-key=4 --midi-vel ocity-anp=5

;-1 adc ;;;uncomment -iadc if RT audio input is needed too
; For Non-realtime ouput |eave only the line bel ow

304

examples/ampmidid.csd
examples/ampmidid.csd

Orchestra Opcodes and Operators

; -0 anpmidid.wav -W;;; for file output any platform
</ CsOpt i ons>
<Csl nst runment s>

sr = 44100
ksmps = 32
nchnls = 2

massign 0, 1 ;assign all mdi to instr. 1
instr 1
i sine ftgenonce 0, 0, 4096, 10, 1 ;sine wave

i hz = cpsmi di nn(p4)

ivelocity = p5

idb anpm did ivelocity, 20 ;map to dynam c range of 20 dB
idb =idb + 60 ;limt range to 60 to 80 decibels
ianmplitude = anpdb(idb) ;loudness in dB to signal anplitude

al oscili ianplitude, ihz, isine
aenv madsr 0.05, 0.1, 0.5, 0.2
asig = al * aenv

outs asig, asig

endi n

</ Csl nstrunent s>
<CsScor e>
; note velocity
02 61 100
+2 65 10

i
i
e
</ CsScor e>

</ CsoundSynt hesi zer >

1
1

See Also

aftouch, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Michael Gogins
2006

305

Orchestra Opcodes and Operators

areson

areson — A notch filter whose transfer functions are the complements of the reson opcode.
Description

A notch filter whose transfer functions are the complements of the reson opcode.
Syntax

ares areson asig, kcf, kbw [, iscl] [, iskip]

ares areson asig, acf, kbw [, iscl] [, iskip]

ares areson asig, kcf, abw [, iscl] [, iskip]

ares areson asig, acf, abw [, iscl] [, iskip]
Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response
factor of 1, i.e. al frequencies other than kcf/acf are attenuated in accordance with the (normalized) re-
sponse curve. A vaue of 2 raisesthe response factor so that its overall RMS value equals 1. (Thisintended
equalization of input and output power assumes all frequencies are physically present; hence it is most
applicable to white noise.) A zero value signifies no scaling of the signal, leaving that to some later ad-
justment (see balance). The default valueisO.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feed-
back loop of previous output, the initial status of the storage space used is significant. A zero value will
clear the space; a non-zero value will allow previous information to remain. The default valueisO.

Performance

ares -- the output signal at audio rate.

asig -- theinput signal at audio rate.

kcf/acf -- the center frequency of the filter, or frequency position of the peak response.

kbw/abw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

areson is afilter whose transfer functions is the complement of reson. Thus areson is a notch filter whose
transfer functions represents the “filtered out” aspects of their complements. However, power scaling is
not normalized in areson but remains the true complement of the corresponding unit. Thusan audio signal,
filtered by parallel matching reson and areson units, would under addition simply reconstruct the original
spectrum.

This property is particularly useful for controlled mixing of different sources (see Ipreson). Complex re-
sponse curves such as those with multiple peaks can be obtained by using a bank of suitable filters in
series. (The resultant response is the product of the component responses.) In such cases, the combined
attenuation may result in a serious loss of signal power, but this can be regained by the use of balance.

Warning
When used with iscl this opcode is not anotch filter but similar to reson.

306

Orchestra Opcodes and Operators

Examples

Hereis an example of the areson opcode. It uses the file areson.csd [examples/areson.csd].

Example 55. Example of the areson opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform

- odac ; RT audi o out

;-1 adc ;;;uncomment -iadc if RT audio input is needed too
For Non-real time ouput |eave only the line bel ow
-0 areson.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1 ; unfiltered noise

asig rand 0.5 ; white noise signal
outs asig, asig
endi n

instr 2 ; filtered noise

kef init 1000

kbw init 100

asig rand 0.5

afil areson asig, kcf, kbw

afil balance afil,asig ; afil = very |oud
outs afil, afi

endi n

</ Csl nstrunent s>
<CsScor e>

i
i
e

102
222

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

aresonk, atone, atonek, port, portk, reson, resonk, tone, tonek

Credits

Audio rate parameters introduced in version 6.02

October 2013.

307

examples/areson.csd
examples/areson.csd

Orchestra Opcodes and Operators

aresonk

aresonk — A notch filter whose transfer functions are the complements of the reson opcode.
Description

A notch filter whose transfer functions are the complements of the reson opcode.
Syntax

kres aresonk ksig, kcf, kbw [, iscl] [, iskip]
Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifiesapeak responsefactor
of 1, i.e. al frequencies other than kcf are attenuated in accordance with the (normalized) response curve.
A value of 2 raises the response factor so that its overall RM S value equals 1. (This intended equalization
of input and output power assumes all frequencies are physically present; hence it is most applicable to
white noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see
balance). The default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feed-

back loop of previous output, the initial status of the storage space used is significant. A zero value will
clear the space; a non-zero value will allow previous information to remain. The default valueisO.

Performance

kres -- the output signal at control-rate.

ksig -- the input signal at control-rate.

kcf -- the center frequency of thefilter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

aresonk is a filter whose transfer functions is the complement of resonk. Thus aresonk is a notch filter
whose transfer functions represents the “filtered out” aspects of their complements. However, power scal-
ing is not normalized in aresonk but remains the true complement of the corresponding unit.

Examples
Here is an example of the aresonk opcode. It uses the file aresonk.csd [examples/aresonk.csd].

Example 56. Example of the aresonk opcode.

See the sections Real-time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >
<CsOpti ons>
; Select audio/mdi flags here according to platform

308

examples/aresonk.csd
examples/aresonk.csd

Orchestra Opcodes and Operators

- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
; For Non-realtime ouput |eave only the Iine bel ow

; -0 aresonk.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>
sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

gisin ftgen 0, 0, 2710, 10, 1
instr 1

ksi g randomh 400, 1800, 150

aout poscil .2, 1000+ksig, gisin
outs aout, aout

endi n

instr 2

ksi g randomh 400, 1800, 150

kbw l'ine 1, p3, 600 ; vary bandw th
ksi g aresonk ksig, 800, kbw

aout poscil .2, 1000+ksig, gisin
outs aout, aout

endi n

</ Csl nstrunent s>
<CsScor e>

i 105

i 2555

e

</ CsScor e>

</ CsoundSynt hesi zer >

See Also

areson, atone, atonek, port, portk, reson, resonk, tone, tonek

309

Orchestra Opcodes and Operators

atone

atone — A hi-pass filter whose transfer functions are the complements of the tone opcode.
Description

A hi-pass filter whose transfer functions are the complements of the tone opcode.
Syntax

ares atone asig, khp [, iskip]
Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feed-
back loop of previous output, the initial status of the storage space used is significant. A zero value will
clear the space; a non-zero value will allow previous information to remain. The default valueisO.

Performance

ares -- the output signal at audio rate.
asig -- theinput signal at audio rate.
khp -- the response curve's half-power point, in Hertz. Half power is defined as peak power / root 2.

atone is a filter whose transfer functions is the complement of tone. atone is thus a form of high-pass
filter whose transfer functions represent the “filtered out” aspects of their complements. However, power
scaling is not normalized in atone but remains the true complement of the corresponding unit. Thus an
audio signd, filtered by parallel matching tone and atone units, would under addition simply reconstruct
the original spectrum.

This property is particularly useful for controlled mixing of different sources (see Ipreson). Complex re-
sponse curves such as those with multiple peaks can be obtained by using a bank of suitable filters in
series. (The resultant response is the product of the component responses.) In such cases, the combined
attenuation may result in a serious loss of signal power, but this can be regained by the use of balance.

Examples
Hereis an example of the atone opcode. It uses the file atone.csd [examples/atone.csd].

Example 57. Example of the atone opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line

flags.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too

310

examples/atone.csd
examples/atone.csd

Orchestra Opcodes and Operators

; For Non-realtime ouput |eave only the Iine bel ow
; -0 atone.wav -W;;; for file output any platform
</ CsOpti ons>

<Csl nst runment s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1 ;white noise

asig rand 1
outs asig, asig

endin

instr 2 ;filtered noise

asig rand 1

khp init 4000

asig atone asig, khp
outs asig, asig

endin

</ Csl nstrunent s>
<CsScor e>

i
i
e

102
222

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

areson, aresonk, atonek, port, portk, reson, resonk, tone, tonek

311

Orchestra Opcodes and Operators

atonek

atonek — A hi-pass filter whose transfer functions are the complements of the tonek opcode.

Description

A hi-pass filter whose transfer functions are the complements of the tonek opcode.

Syntax

kres atonek ksig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feed-
back loop of previous output, the initial status of the storage space used is significant. A zero value will
clear the space; a non-zero value will allow previous information to remain. The default valueisO.

Performance

kres -- the output signal at control-rate.
ksig -- the input signal at control-rate.
khp -- the response curve's half-power point, in Hertz. Half power is defined as peak power / root 2.

atonek is a filter whose transfer functions is the complement of tonek. atonek is thus a form of high-pass
filter whose transfer functions represent the “filtered out” aspects of their complements. However, power
scaling is not normalized in atonek but remains the true complement of the corresponding unit.

Examples
Here is an example of the atonek opcode. It uses the file atonek.csd [examples/atonek.csd].

Example 58. Example of the atonek opcode.

See the sections Real -time Audio and Command Line Flags for more information on using command line
flags.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;uncomment -iadc if RT audio input is needed too
For Non-realtinme ouput |eave only the line bel ow

; -0 atonek.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>
sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

312

examples/atonek.csd
examples/atonek.csd

Orchestra Opcodes and Operators

gisin ftgen 0, 0, 2710, 10, 1
instr 1

ksi g randomh 400, 1800, 150

aout poscil .2, 1000+ksig, gisin
outs aout, aout

endi n

instr 2

ksi g randomh 400, 1800, 150

khp line 1, p3, 400 ;vary high-pass
ksi g atonek ksig, khp

aout poscil .2, 1000+ksig, gisin
outs aout, aout

endi n

</ Csl nstrunent s>
<CsScor e>

i 105

i 2555

e

</ CsScor e>

</ CsoundSynt hesi zer >

See Also

areson, aresonk, atone, port, portk, reson, resonk, tone, tonek

Credits

Author: Robin Whittle
Australia
May 1997

313

Orchestra Opcodes and Operators

atonex

atonex — Emulates a stack of filters using the atone opcode.

Description

atonex is equivalent to afilter consisting of more layers of atone with the same arguments, serially con-
nected. Using a stack of a larger number of filters allows a sharper cutoff. They are faster than using a
larger number instances in a Csound orchestra of the old opcodes, because only one initialization and k-
cycle are needed at time and the audio loop falls entirely inside the cache memory of processor.

Syntax

ares atonex asig, khp [, inumayer] [, iskip]

ares atonex asig, ahp [, inumayer] [, iskip]

Initialization

inumlayer (optional) -- number of elementsin the filter stack. Default valueis 4.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feed-
back loop of previous output, the initial status of the storage space used is significant. A zero value will
clear the space; a non-zero value will allow previous information to remain. The default valueisO.

Performance
asig -- input signal

khp/ahp -- the response curve's half-power point. Half power is defined as peak power / root 2.

Examples
Here is an example of the atonex opcode. It uses the file atonex.csd [examples/atonex.csd].

Example 59. Example of the atonex opcode.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;;unconment -iadc if RT audio input is needed too
For Non-real tinme ouput |eave only the line bel ow

; -0 atonex.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

instr 1 ; unfiltered noise

314

examples/atonex.csd
examples/atonex.csd

Orchestra Opcodes and Operators

asig rand 0.7 ; white noise
outs asig, asig

endi n
instr 2 ; filtered noise
asig rand 0.7
khp l'ine 100, p3, 3000
afilt atonex asig, khp, 32
Clipthe filtered signal's anplitude to 85 dB
al clip afilt, 2, anmpdb(85)
outs al, al

endi n

</ Csl nstrunent s>
<CsScor e>

102
i 222

e

</ CsScor e>
</ CsoundSynt hesi zer >

See Also

resonx, tonex

Credits

Author: Gabriel Maldonado (adapted by John ffitch)
Italy

New in Csound version 3.49
Audio rate parameters introduced in version 6.02

October 2013.

315

Orchestra Opcodes and Operators

ATSadd

ATSadd — uses the datafrom an ATS analysis file to perform additive synthesis.

Description

ATSadd reads from an ATS analysis file and uses the data to perform additive synthesis using an internal
array of interpolating oscillators.

Syntax

ar ATSadd ktimepnt, kfnod, iatsfile, ifn, ipartials[, ipartialoffset, \
ipartialincr, igatefn]

Initialization

iatsfile —the ATS number (n in ats.n) or the name in quotes of the analysis file made using ATS [http://
www-ccrma.stanford.edu/~juan/ATS.html].

ifn — table number of a stored function containing asine wave for ATSadd and a cosine for ATSaddnz (see
examples below for more info)

ipartials — number of partias that will be used in the resynthesis (the noise has a maximum of 25 bands)
ipartialoffset (optional) —isthefirst partial used (defaults to 0).

ipartialincr (optional) — sets an increment by which these synthesis opcodes counts up from ipartial offset
for ibins components in the re-synthesis (defaults to 1).

igatefn (optional) —isthe number of astored function whichwill be applied to theamplitudesof theanalysis
bins before resynthesis takes place. If igatefn is greater than 0 the amplitudes of each bin will be scaled
by igatefn through a simple mapping process. First, the amplitudes of all of the binsin all of the framesin
the entire analysis file are compared to determine the maximum amplitude value. Thisvalue is then used
to create normalized amplitudes as indices into the stored function igatefn. The maximum amplitude will
map to the last point in the function. An amplitude of 0 will map to the first point in the function. Values
between 0 and 1 will map accordingly to points along the function table. See the examples below.

Performance

ktimepnt — The time pointer in seconds used to index the ATS file. Used for ATSadd exactly the same
as for pvoc.

ATSadd and ATSaddnz are based on pvadd by Richard Karpen and usefiles created by Juan Pampin'sATS
(Analysis - Transformation - Synthesis [http://www-ccrma.stanford.edu/~juan/ATS.html]).

kfmod — A control-rate transposition factor: avalue of 1 incurs no transposition, 1.5 transposes up a perfect
fifth, and .5 down an octave. Used for ATSadd exactly the same as for pvoc.

ATSadd reads from an ATS analysis file and uses the data to perform additive synthesis using an internal
array of interpolating oscillators. The user suppliesthe wave table (usually one period of asinewave), and
can choose which analysis partials will be used in the re-synthesis.

316

http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html

Orchestra Opcodes and Operators

Examples

ktime line 0, p3, 2.5
asig ATSadd ktine, 1, "clarinet.ats", 1, 20, 2

In the example above, ipartialsis 20 and ipartial offset is 2. Thiswill synthesize the 3rd thru 22nd partials
in the "clarinet.ats' analysis file. kfimod is 1 so there will be no pitch transformation. Since the ktimepnt
envelope moves from 0 to 2.5 over the duration of the note, the analysis file will be read from 0 to 2.5
seconds of the origina duration of the analysis over the duration of the csound note, this way we can
change the duration independent of the pitch.

Examples

Here is a complete example of the AT Sadd opcode. It uses the file ATSadd.csd [examples/ATSadd.csd].

Example 60. Example of the AT Sadd opcode.

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform

- odac ; RT audi o out

;-1 adc ;;;uncomment -iadc for RT audio input is needed too
For Non-real time ouput |eave only the line bel ow

; -0 ATSadd.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1 ; "beats.ats" is created by atsa

ktime line 0, p3, 2

asig ATSadd ktine, 1, , 1, 20, 0, 2
outs asig*3, asig*3 ;anplify

endi n

</ Csl nst runment s>

<CsScor e>

; Sine wave

f 10 16384 10 1

i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

In the above example we synthesize 20 partialsasin example 1 except thistime we're using aipartial offset
of O andipartialincr of 2, which meansthat we'll start from the first partial and synthesize 20 partialstotal,
skipping every other one (ie. partial 1, 3, 5,..).

Here is another example of the ATSadd opcode. It uses the file ATSadd-2.csd [examples/ AT Sadd-2.csd].

Example 61. Example 2 of the AT Sadd opcode.

317

examples/ATSadd.csd
examples/ATSadd.csd
examples/ATSadd-2.csd
examples/ATSadd-2.csd

Orchestra Opcodes and Operators

<CsoundSynt hesi zer >
<CsOpti ons>

-odac -d -ml

</ CsOpti ons>

<Csl nst runment s>

; exanpl e by joachimheintz

sr = 44100
ksmps = 32
nchnls = 2
0dbfs =1
gi Si ne ftgen 0, 0, 1024, 10, 1
instr All TheTones
Sfile = "fox.ats"
prints "Resynthesizing with all the tones.\n"
i Dur ATSi nfo Sfile, 7
p3 = i Dur
i NunParts ATSi nfo Sfile, 3
prints "Overal | nunber of partials = %\ n", iNunmParts
ktime l'ine 0, iDur, iDur
asig ATSadd ktime, 1, Sfile, giSine, iNunParts
outs asig, asig

;start next instr
event _i “1", "ToneslnBandsOf Ten", iDur+1l, iDur, 0, iNunmParts
endin

instr Tonesl nBandsOf Ten

Sfile = "fox.ats"
i O fset = p4 ;start at this partial
i NunParts = p5 ;overall nunmber of partials
prints "Resynthesizing with partials % - %l \n", iOfset+1l, i Offset+10
ktime l'ine 0, p3, p3
asig ATSadd ktime, 1, Sfile, giSine, 10, iCOfset
outs asig, asig

;start next instance until there are enough partials |eft
if iOFfset+20 < i NunParts then
event _i “i", "ToneslnBandsOf Ten", p3+1, p3, iOfset+10, i NunParts
el se
event _i "1ty "End', p3, 1
endi f
endi n

instr End
exi t now

endin
</ Csl nstrunent s>
<CsScor e>
i "All TheTones" 0 1
e 999
</ CsScor e>
</ CsoundSynt hesi zer >

See also

ATSead, ATS eadnz, ATSinfo, ATSbufread, ATScross, ATSinterpread, ATSpartialtap, ATSaddnz, ATSsin-
noi

Credits

Author: Alex Norman

318

Orchestra Opcodes and Operators

Seattle,Washington
2004

319

Orchestra Opcodes and Operators

ATSaddnz

ATSaddnz — uses the data from an ATS analysis file to perform noise resynthesis.

Description

ATSaddnzreadsfrom an ATS analysisfile and usesthe datato perform additive synthesis using amodified
randi function.

Syntax

ar ATSaddnz ktinepnt, iatsfile, ibands[, ibandoffset, ibandincr]

Initialization

iatsfile —the ATS number (n in ats.n) or the name in quotes of the analysis file made using ATS [http://
www-ccrma.stanford.edu/~juan/ATS.html].

ibands —number of noise bands that will be used in the resynthesis (the noi se has amaximum of 25 bands)
ibandoffset (optional) —is the first noise band used (defaults to 0).

ibandincr (optional) — sets an increment by which these synthesis opcodes counts up from ibandoffset for
ibins components in the re-synthesis (defaults to 1).

Performance

ktimepnt — The time pointer in seconds used to index the ATS file. Used for ATSaddnz exactly the same
asfor pvoc and ATSadd.

ATSaddnz and ATSadd are based on pvadd by Richard Karpen and usefiles created by Juan Pampin'sATS
(Analysis - Transformation - Synthesis [http://www-ccrma.stanford.edu/~juan/ATS.html]).

ATSaddnz also reads from an ATS file but it resynthesizes the noise from noise energy data contained
in the ATSfile. It uses a modified randi function to create band limited noise and modulates that with a
cosine wave, to synthesize a user specified selection of frequency bands. Modulating the noiseis required
to put the band limited noise in the correct place in the frequency spectrum.

Examples

ktime |ine 0, p3, 2.5
asig ATSaddnz ktinme, "clarinet.ats", 25

In the example above we're synthesizing all 25 noise bands from the data contained in the ATS analysis
filecaled "clarinet.ats'.

Examples

Here is a complete example of the ATSaddnz opcode. It uses the file ATSaddnz.csd [exam-
ples’/ATSaddnz.csd].

320

http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
examples/ATSaddnz.csd
examples/ATSaddnz.csd
examples/ATSaddnz.csd

Orchestra Opcodes and Operators

Example 62. Example of the AT Saddnz opcode.

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform

- odac ; RT audi o out

;-1 adc ;;;uncomment -iadc for RT audio input is needed too
For Non-real time ouput |eave only the line bel ow
-0 ATSaddnzwav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runment s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1

instr 1 ; "beats.ats" is created by atsa

ktime Iine 0, p3, 2

asi g ATSaddnz ktime, "cage.ats", 1, 24
outs asig*10, asig*10 ;anplify

endi n

</ Csl nstrunent s>
<CsScor e>

i 102
e

</ CsScor e>
</ CsoundSynt hesi zer >

Here we synthesize only the 25th noise band (ibandoffset of 24 and ibands of 1).

Here is another example of the ATSaddnz opcode. It uses the file ATSaddnz-2.csd [exam-
ples/AT Saddnz-2.csd].

Example 63. Example 2 of the AT Saddnz opcode.

<CsoundSynt hesi zer >
<CsOpti ons>

-odac -d -ml

</ CsOpti ons>

<Csl nst runment s>

;exanpl e by joachimheintz

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
instr All TheNoi se
Sfile = "fox.ats"
prints "Resynthesizing with all the noise.\n"
i Dur ATSinfo Sfile, 7
p3 = i Dur
ktime l'ine 0, iDur, iDur
asig ATSaddnz ktime, Sfile, 25
outs asig, asig

;start next instr
event _i "i", "NoiselnBandsO Five", iDur+l, 1, O

321

examples/ATSaddnz-2.csd
examples/ATSaddnz-2.csd
examples/ATSaddnz-2.csd

Orchestra Opcodes and Operators

endi n

instr Noi sel nBandsOf Fi ve

Sfile = "fox.ats"
prints "Resynt hesi zing with noi se bands % - %l.\n", p4, p4+5
i Dur ATSinfo Sfile, 7
p3 = i Dur
ktime l'ine 0, iDur, iDur
asig ATSaddnz ktime, Sfile, 5, p4
outs asig, asig

;start next instr

if p4 < 20 then
event _i "i", "NoiselnBandsO Five", iDur+l, 1, p4+5

endi f

endi n

</ Csl nstrunent s>

<CsScor e>

i "Al'l TheNoise" 0 1

e 25

</ CsScor e>

</ CsoundSynt hesi zer >

See also

ATSead, ATS eadnz, ATSnfo, ATSbufread, ATScross, ATSinterpread, ATSpartialtap, ATSaddnz, ATSsin-
noi

Credits

Author: Alex Norman
Sesttle, Washington
2004

322

Orchestra Opcodes and Operators

ATSbufread

ATShufread — reads data from and ATS data file and stores it in an internal data table of frequency,
amplitude pairs.

Description

ATSoufread readsdatafrom and ATS datafile and storesit in aninternal datatable of frequency, amplitude
pairs.

Syntax

ATSbufread ktinepnt, kfrnod, iatsfile, ipartials[, ipartialoffset, \
ipartialincr]

Initialization

iatsfile — the ATS number (n in ats.n) or the name in quotes of the analysis file made using ATS [http://
www-ccrma.stanford.edu/~juan/ATS.html].

ipartials — number of partialsthat will be used in the resynthesis (the noise has a maximum of 25 bands)
ipartialoffset (optional) —isthefirst partial used (defaults to 0).

ipartialincr (optional) — sets an increment by which these synthesis opcodes counts up from ipartial offset
for ibins components in the re-synthesis (defaults to 1).

Performance

ktimepnt — The time pointer in seconds used to index the ATSfile. Used for ATSoufread exactly the same
as for pvoc.

kfmod — an input for performing pitch transposition or frequency modulation on all of the synthesized
partials, if no fm or pitch changeis desired then use a 1 for this value.

ATSoufread is based on pvbufread by Richard Karpen. ATScross, ATSnterpread and ATSpartialtap are
all dependent on ATSbufread just as pveross and pvinterp are on pvbufread. ATSoufread reads data from
and ATS data file and stores it in an internal data table of frequency, amplitude pairs. The data stored
by an ATSbufread can only be accessed by other unit generators, and therefore, due to the architecture
of Csound, an ATSbufread must come before (but not necessarily directly) any dependent unit generator.
Besides the fact that ATSbufread doesn't output any data directly, it works almost exactly as ATSadd. The
ugen uses a time pointer (ktimepnt) to index the data in time, ipartials, ipartialoffset and ipartialincr to
select which partialsto store in the table and kfmod to scale partialsin frequency.

Examples
Hereisan exampleof the AT Sbufread opcode. It usesthefile ATSbufread.csd [examples/ AT Shufread.csd].

Example 64. Example of the AT Sbufread opcode.

323

http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
http://www-ccrma.stanford.edu/~juan/ATS.html
examples/ATSbufread.csd
examples/ATSbufread.csd

Orchestra Opcodes and Operators

<CsoundSynt hesi zer >

<CsOpt i ons>
Sel ect audio/m di flags here according to platform

- odac ;. RT audi o out

;-1 adc ;;,uncomment -iadc for RT audio input is needed too
For Non-realtinme ouput |eave only the line bel ow
-0 ATSbufread.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs = 1

instr 1 ; "beats.ats" and "fox.ats" are created by atsa

ktime line 0, p3, 4
ktime2 line 0, p3, 4
kline expseg 0.001, .3, 1, p3-.3, 1
kline2 expseg 0.001, p3, 3
ATSbufread ktine2, 1, "fox. ats", 20
aout ATScross ktime, 2, "beats.ats", 1, kline, 0.001 * (4 - kline2), 180
outs aout*2, aout*2

endin

</ Csl nstrunent s>
<CsScor e>

; Sine wave.

f 10 16384 10 1
i 104

e

</ CsScor e>
</ CsoundSynt hesi zer >

See also the examples for ATScross, ATSinterpread and ATSpartialtap

See also

ATSead, ATS eadnz, ATSnfo, ATSsinnoi, ATScross, ATSnterpread, ATSpartialtap, ATSadd, ATSaddnz

Credits

Author: Alex Norman
Seattle,Washington
2004

324

Orchestra Opcodes and Operators

ATScross

ATScross — perform cross synthesis from ATS analysisfiles.

Description

ATScross uses datafrom an ATS analysis file and data from an ATSbufread to perform cross synthesis.

Syntax

ar ATScross ktimepnt, kfrnod, iatsfile, ifn, knylev, kbuflev, ipartials \
[, ipartialoffset, ipartialincr]

Initialization

iatsfile — integer or character-string denoting a control-file derived from ATS analysis of an audio signal.
An integer denotes the suffix of a file ATS.m; a character-string (in double quotes) gives a filename,
optionally afull pathname. If not full-path, the file is sought first in the current directory, then in the one
given by the environment variable SADIR (if defined).

ifn — table number of a stored function containing a sine wave.
ipartials — number of partials that will be used in the resynthesis
ipartialoffset (optional) —isthe first partial used (defaults to 0).

ipartialincr (optional) — sets an increment by which these synthesis opcodes counts up from ipartial offset
for ibins components in the re-synthesis (defaults to 1).

Performance

ktimepnt — The time pointer in seconds used to index the ATS file. Used for ATScross exactly the same
asfor pvoc.

kfmod — an input for performing pitch transposition or frequency modulation on al of the synthesized
partials, if no fm or pitch change is desired then use a1 for this value.

kmylev - scales the ATScross component of the frequency spectrum applied to the partials from the ATS
file indicated by the ATScross opcode. The frequency spectrum information comes from the ATScross
ATSfile. A value of 1 (and O for kbuflev) gives the same results as ATSadd.

kbuflev - scales the ATSbufread component of the frequency spectrum applied to the partialsfromthe ATS
file indicated by the ATScross opcode. The frequency spectrum information comes from the ATSbufread
ATSfile. A value of 1 (and O for kmylev) resultsin partials that have frequency information fromthe ATS
file given by the ATScross, but amplitudes imposed by data from the ATS file given by ATSbufread.

ATScross uses data from an ATS analysis file (indicated by iatsfile) and data from an ATSbufread to
perform cross synthesis. ATScross uses ktimepnt, kfmod, ipartials, ipartial offset and ipartialincr just like
ATSadd. ATScross synthesizes a sine-wave for each partial selected by the user and uses the frequency of
that partia (after scaling in frequency by kfmod) to index the table created by ATSbufread. Interpolation
is used to get in-between values. ATScross uses the sum of the amplitude datafrom its ATSfile (scaled by
kmylev) and the amplitude data gained from an ATSbufread (scaled by kbuflev) to scale the amplitude of

325

Orchestra Opcodes and Operators

each partial it synthesizes. Setting kmylev to one and kbuflev to zero will make ATScross act exactly like
ATSadd. Setting kmylev to zero and kbuflev to one will produce a sound that has all the partials selected by
the ATScross ugen, but with amplitudes taken from an ATSbufread. The time pointers of the ATSbufread
and ATScross do not need to be the same.

Examples

Hereis an example of the ATScross opcode. It uses the file ATScross.csd [examples/ATScross.csd].

Example 65. Example of the AT Scross opcode.

<CsoundSynt hesi zer >

<CsOpti ons>

; Sel ect audio/mdi flags here according to platform

- odac ;5 RT audi o out

;-1 adc ;i uncomment -iadc